

No.35(2016)

最新型小型 スペースチャンバー

大陽日酸技報 No. 35(2016)

2017年2月発行

<目次> ■技術報告 自励振動を利用した対流伝熱型酸素富化バーナの開発	p1
■技術紹介 温度可変へリウム液化冷凍設備	p8
超臨界流体クロマトグラフによる油分分析	p10
PET ガン診断薬原料「水-18O」製造プラント3 号機	p13
ITER 用超臨界ヘリウム循環ポンプの試験設備	p15
■商品紹介 温度履歴統合管理システム 「CryoLibrary iMaster®」 プラズマ溶接システム 「サンアーク®プラズママイスター」 凍結保存容器用 新型液面センサおよびコントローラ 「新型レベルマスター(型式:CLLC-7)」	p18 p19 p20
最新型小型スペースチャンバー	p22
■特許紹介 最近公開された出願特許	p23

自励振動を利用した対流伝熱型酸素富化バーナの開発

Development of Cnvective Heat Transfer-Type Oxy-Enriched Burner Using Self-Induced Oscillation

斉 藤 岳 志*	清 野 尚 樹*	山本康之*	萩 原 義 之*
SAITO Takeshi	SEINO Naoki	YAMAMOTO Yasuyuki	HAGIHARA Yoshiyuki

幅広い加熱面積を有し、均一加熱が可能な新しい対流伝熱型酸素富化バーナ(自励振動 バーナ)を開発した。本バーナは、自励振動現象を利用することで、機械的な可動部を必 要とせずに火炎向きが周期的に変化する、画期的な機能を備える。筆者らは、自励振動バー ナのノズル構造の検討を行い、火炎開き角 60°まで安定に振動可能なノズル構造を見出 した。さらに、本バーナと従来型バーナとで対流伝熱特性を比較した結果、従来と比較し 2 倍程度の面積を均一に加熱できることを確認した。

We have developed a new convective heat transfer-type oxy-enriched burner, which can operate wide area and uniform heating. The burner can alter flame direction using self-induced oscillation phenomenon, without mechanical moving parts. With actual experiments, we found and decided a suitable nozzle framework for stable self-oscillation up until 60 degree angle of flame. Besides, we confirmed that the new burner has heating area almost double compared to the conventional burner.

1. はじめに

昨今の燃料価格の高騰に伴い,各分野において省エネ ルギー化によるコスト削減が求められている。特に鉄鋼 業界といった大量のエネルギーを使用する分野におい て,省エネルギー化へのニーズは大きい。

このニーズに応える技術として,酸素燃焼技術が挙げ られる。支燃性ガスに純酸素あるいは酸素富化空気を用 いることで,高温の燃焼火炎による伝熱効率の向上,お よび排ガス量の低減によるエネルギー利用効率を高め ることが期待でき,燃料費の削減が可能となる^{1,2)}。

当社では酸素燃焼技術を利用し、溶解炉向け多機能酸 素バーナ「SCOPE-JET[®]」,加熱炉・取鍋向け低 NOx 酸 素富化バーナ「Innova-Jet[®]」等の,電炉業界向け商材の 開発,上市を行ってきた^{3,4)}。Fig.1に,電炉鋼の製造プ ロセスへの当社商材の展開状況を示す。現在,溶解(電 炉),取鍋予熱,加熱炉向けのアプリケーションは有し ており,残るは連続鋳造のみである。このプロセスへ提 案可能な技術開発を行うことで,同市場への総合提案が 可能となる。

Fig.1 Development of our products to EAF process.

連続鋳造プロセスにおいては, Fig.2 に示すタンディッシュが用いられる。具体的には,水平方向に広い面積を 持つ一方で垂直方向に浅いといった構造的特徴を持つ, 耐火物製の注湯用容器が用いられる。そのため Fig.3 に 示すように,従来型のストレート火炎を形成する,加熱 面積の狭い対流伝熱型バーナでは底部に局所加熱を生 じるために,高熱負荷により耐火物の寿命低下が問題と なる。

そこで本報告では,自励振動現象を利用することで振 動火炎を形成し,広範囲の均一加熱を可能とするタン ディッシュ向け新規対流伝熱型バーナを開発したので, その詳細について報告する。

^{*} 開発・エンジニアリング本部 ガスアプセンター 開発二課

Fig.3 Difference of flame between conventional burner and advanced burner.

2. 試験概要

2.1 自励振動現象

Fig.4 に,自励振動を生じるノズル構造と,振動時の噴 流両端での圧力変動の様子を示す。ノズルはガス噴出口, 下流側に向かい扇状に広がるスロート,およびガス噴出 ロースロートの間の両側を連結する連結管とから構成 される。

Fig.4 Structure of self-induced oscillation burner nozzle.

ガスは噴出口より出た後,コアンダ効果(噴流のもつ 粘性によって,噴流が壁面へ付着する現象)により一方 のスロート壁に付着する(Fig.5 (A))。この際,噴流の 両端には圧力差(= $P_L - P_R$)が生じ(Fig.5 下段),対応するガス流れが連結管内に生じる。このガス流れは噴流両端の圧力差を減少させるように働き、やがて圧力差がゼロとなった際に噴流はスロート壁を離れ、他方の壁面へと付着する(Fig.5 (B))。この変化が連続的に生じることで、噴流向きが周期的に変化する^{5,6}。

この自励振動現象をバーナに応用することで,燃料ガ ス向きを周期的に変化させ,火炎向きを周期的に変化す ることが可能となる。これにより,火炎形成領域が広が り,従来型のバーナでは困難であった幅広い加熱面積を 達成できるとともに,振動に伴うガス攪拌効果による均 一加熱が期待できる。また,自励振動は機械的な駆動部 を必要としないため,シンプルなバーナ構造とすること が可能である。

2.2 試験用バーナ

タンディッシュ加熱用バーナに要求される性能とし ては,

- · 非水冷構造
- 広範囲に均一な伝熱分布
- 従来と同程度の伝熱効率

が挙げられる。自励振動現象に関する基礎的な技術報告 はあるものの,同現象を燃焼機器に応用した例は無く, 安定に自励振動を生じるノズル構造は不明瞭であった。 バーナへの応用にあたり,振動する噴流が燃焼する際に 自励振動を可能とするノズル構造の見極めが必要と考 えた。そこで, Fig.6に示す各パラメータ (L₁, L₂, T, α) による影響を調べた。

タンディッシュの予熱においては,安全性の面から非 水冷構造が求められる。そこで,非水冷においても連続 運転が可能なバーナ構造を検討した。また,従来のバー ナとの比較により,伝熱分布と伝熱効率の評価を行った。

Fig.6 Parameters of self-induced oscillation burner nozzle.

本試験においては、Fig.7の構造のバーナを用い、燃料噴 流を振動させる構造とした。また、燃料噴流を左右方向 (一次酸化剤)および上下方向(二次酸化剤)から挟み 込むよう酸化剤を噴出し、燃料と酸化剤との混合効率を 高めるとともに、火炎リフトの抑制を狙った。性能比較 用として、多重管構造の従来型バーナを用いた。各バー ナにおけるガス流量・流速設計条件を Table 1 に示す。な お、酸化剤は40 %酸素富化空気として設計している。

Fig.7 Front view of conventional burner and self-induced oscillating burner.

Table 1	Rated	gas	flow	rate	of	each	burne
---------	-------	-----	------	------	----	------	-------

	Gas Volu	me 🖊 Gas	Velocity*	
D	[Nm ³ /h] / [-]			
Burner	F 1	1^{st}	2^{nd}	
	Fuel	Oxidant	Oxidant	
Conventional	8/1.0	42/1.0	63/1.0	
Oscillation				
(used for	10 / 1 0	(2/10)	12 / 0.8	
nozzle	18/ 1.0	03/ 1.0	42/ 0.8	
parameter)				
Oscillation				
(used for	8/1.0	63/1.3	42/1.0	
heat transfer)				

* Gas velocity is shown in the ratio compared with the conventional burner.

2.3 試験条件

【ノズル構造の評価】

燃料として LPG を用い, 定格条件にて酸化剤流量を固定した状態で, 燃料流量のみを変化させ, Table 2 に示す 各パラメータの影響を確認した。評価項目としては,

- 自励振動の安定性
- 振動周波数f
- ・ 燃焼状態

の3点とした。安定性の評価については、ノズル近傍の 連結管両端での圧力 P_L , P_R を測定し、その変動が Fig.5 に示すように周期的であり、火炎がスロート内で局在化 せず振動を続ける状態を安定と判断した。振動周波数 fについては、ノズル近傍の連結管両端での圧力 P_L , P_R の変動より1周期に要する時間 τ を導出し、 $f=1/\tau$ より 算出した。

Table	2	Standards	of	each	parameter
rabie	4	Standarus	U1	caun	parameter.

Parameter	Value
L1**	2D
L ₂ **	6D
T**	$(1 + 0.54L_1)D$
α	30°

** Each parameters are designed based on gas outlet width "D".

【伝熱特性の評価】

バーナの伝熱特性の評価は、水冷伝熱盤を用いた。評価に際しては、自励振動バーナのノズル各パラメータおよび酸化剤吹き込み方式の影響を見極めた。

Fig. 8 Basis for measurement of heat transfer.

Fig.8 に,対流伝熱測定の原理を示す。細分化された伝 熱盤に対し,所定量 ΔW の冷却水を通水しておく。ここ で,伝熱盤の1区間への入熱量をHとすると,冷却水の 入口温度 T_{in} ,出口温度 T_{out} ,水の比熱 C とを用いて

$$H = \Delta W \times (T_{out} - T_{in}) \times C$$

と表せるため、ΔW、T_{in}、T_{out}を測定することで1区間 への入熱量を導出できる。また図のようにバーナを可動 することで、バーナ中心軸と測定部との距離を変化し、 火炎振動方向への伝熱量分布を測定した。

3. 試験結果および考察

3.1 ノズル構造の評価

Fig.9 Flame of self-induced oscillation burner.

Fig.4 に示すノズル構造の自励振動バーナを用い大気 燃焼試験を実施したところ, Fig.9 のようにスロートに 沿って火炎が振動する様子が確認できた(振動火炎)。

本開発においては,バーナを非水冷構造とする必要が ある。従って,ノズルの過熱防止のために,火炎がノズ ル内で局在化しない状態が好ましい。そこで,自励振動 の安定化に影響するパラメータの見極めを実施した。

```
(1) 燃料吹出ロースロート入口間距離:L1
```

L1を D~4D の範囲で変化させ、噴流のスロート壁へ

の付着力 F_a と,連結管からの剥離力 F_d とのバランスを 変化させ、自励振動への影響を調べた。

Fig.10 Relationship between fuel flow rate and requency.

Fig.10 に、燃料流量と振動周波数との関係を示す。燃料流量の増加に伴い、振動周波数は線形的に増加する。 これは燃料噴流速度の増加により、噴流による連結管内 からの同伴ガス量が増加し、噴流両端の圧力差を解消す るのに要する時間が短くなり、これに伴って振動周波数 が増加したものと考える。

また, $L_1 & D$ から 2D に延長することで,安定な自励 振動範囲が拡大することがわかった。 L_1 の増加に伴い T が増加し,バーナ中心軸とスロートとの距離は離れてい くが,これに伴い F_a は小さくなると考えられる。ここで 自励振動の安定化には, $F_a & F_d$ の乖離が小さいことが好 ましいと考えられる。 $L_1=2D$ とすることで,広い流量範 囲にわたって $F_a & F_d$ とが適切な範囲でバランスしたた めに,安定範囲が拡大したと考える。

加えて、同じ燃料流速においても、L₁=2Dの方が、自 励振動数が小さい傾向がみられた。これはTの増加によ りスロート壁間距離が離れ、噴流が他方の壁面まで移動 する時間が長くなるため、これが振動周波数の低下とし て現れたと考える。以上より、L₁の調整により振動周波 数が制御できることが示唆された。

なお、 $L_1 \ge 3D$ とした場合は振動を生じなかったため、 以降は $L_1=2D$ を最適値とした。

(2) スロート入口幅:T

 L_1 の検討において,スロート壁間の距離が自励振動に 大きく影響することが示唆された。そこで T を 1.5D~ 2.3Dの範囲で変化させ,自励振動への影響を調べた。

Fig.11 Relationship between T and ΔQ .

Fig.11 に、T と安定流量範囲 ΔQ との関係を示す。 T=1.9D 付近を中心に ΔQ はほぼ左右対称に低下し、 T<1.6D、T>2.2D では自励振動が生じないことがわかっ た。T>2.2D において自励振動が生じない理由は、L₁の 検討において述べた通りであり、Fa<<Fdとなるため自励 振動が生じないと考える。逆に T<1.6D と T を狭めた場 合は、スロート壁と噴流の距離が狭まることで付着力が 増し、Fa>>Fd となり自励振動が生じないと考える。すな わち、Fa と Fd とを適切にバランスさせる、T の至適値が 存在することがわかった。

(3) スロート開き角度: α

αを30~60°の範囲で変化させ,噴流の振動角度を変 化させることでの,燃焼状態への影響を調べた。

全てのαにおいて,同程度のターンダウン比において 安定な振動火炎が生じることを確認した。また Fig.9 に 示すように,火炎開き角がおおよそαと同程度となるこ とを確認した。すなわち,αを変えることで,任意の開 き角をもった振動火炎が用途に応じ形成可能と考える。

3.2 対流伝熱特性の評価

振動火炎の燃焼状態が対流伝熱特性に与える影響に ついて、水冷伝熱盤での測定結果を示す。

火炎開き角度

スロート開き角 α = 30°, 60°における対流伝熱特性 について比較を行った。

 α が異なる場合の伝熱分布の違いを, Fig.12 に示す。 $\alpha = 30°$ ではバーナ中心近傍に局所的な伝熱量分布がみ られ、 $\alpha = 60°$ とすることで、伝熱分布がより大きくな ることを確認した。両者の伝熱効率は Table 3 よりほぼ同 程度であるため、火炎開き角の増加により、同じ熱量を より広範囲に均一に伝熱できたと考える。

(2) 酸化剤吹き込み比: β

 $\beta =$

(一次酸化剤量) / (一次酸化剤量 + 二次酸化剤量) により β を定義し, β を 0.4~0.8 で変化させた際の対流 伝熱特性を見極めた。

Fig. 14 Effect of β on heat transfer efficiency.

Fig.13 に、 β の異なる場合での伝熱量分布を、Fig.14 に、 β の異なる場合での伝熱効率を、それぞれ示す。 β の増加により、伝熱面積を変えることなく、伝熱量を増加できた。

βを増加すると、燃料噴流の振動方向に向かう酸化剤 量の割合が多くなるため、火炎が最大振幅をとる付近で 完全燃焼を生じるが、βが小さい場合、燃料噴流を上下 から挟み込む酸化剤量の割合が多くなるため、燃料噴流 の少ないバーナ中心軸近傍では混合が良好なものの、火 炎の最大振幅付近での混合が不完全となり、不完全燃焼 となり伝熱効率が低くなると考える。

(3) 従来型バーナとの比較

 $L_1 = 2D$, T = 1.9D, $\alpha = 60^\circ$, $\beta = 0.8$ とし, 対流伝 熱特性について適正化を行った自励振動バーナについ て, 従来型のストレート火炎を形成するバーナとの比較 を行った。

Fig. 15 Effect of burner type on heat transfer distribution.

Table 4 Effect of burner type on heat transfer efficiency.

Duran	Heat Transfer		
Builler	Efficiency (%)		
Conventional	16.9		
Oscillating	17.0		

Fig.15 に,従来型バーナおよび自励振動バーナの伝熱 量分布を示す。従来型バーナはバーナ中心に局所的な伝 熱量分布を持つのに対し,自励振動バーナは広範囲に均 ーな伝熱量分布を有しており,伝熱面積は従来型と比較 しおおよそ 2 倍となっていることが確認された。また Table 4 に示すように,対流伝熱効率の優れた従来型バー ナと比較しても,自励振動バーナは同程度の伝熱効率を 有することがわかった。

4. まとめ

本試験において、以下の結果を得た。

- (1) 自励振動現象を酸素富化バーナに適用し、機械的 な機構を持つことなく火炎を振動させるバーナ を開発した。
- (2) ノズルパラメータについて、L₁を増加することで 自励振動可能な流量範囲が広がり、L₁に応じてT を適切な範囲とすることで、自励振動の安定化が 可能であることを確認した。これにより、火炎開 き角 60°まで安定に振動可能な自励振動バーナ の設計を確立した。
- (3) 火炎開き角と酸化剤吹き込み方式の適正化により、自励振動バーナの対流伝熱効率を向上できることを確認し、これらを最適化した自励振動バーナにおいて、従来型バーナと比較し2倍程度の面積を均一加熱することが可能であることを確認した。

参考文献

- 1) 諏訪俊雄,小林伸明,三宅新一.酸素燃焼技術とその展望. 工業加熱,2002,39(3),p3-12.
- 2) 大原清司. 酸素による燃焼の技術. 工業加熱, 2002, 39 (3), p13-18.
- 3) 五十嵐弘, 阿部智信, 三宅新一. 高速酸素バーナーランス (SCOPE-JET)の開発. 日本酸素技報, 2003, 22, p7-12.
- 4) 羽路智之, 飯野公夫, 萩原義之, 山本康之. 超低 NOx 酸素 富化燃焼システム「Innova-Jet」. 大陽日酸技報, 2011, 30, p1-6.
- 5)高曽徹,河口真也,北条正弘,速水洋.フリップフロップノ ズル噴流の自励振動.航空宇宙学会・流体力学会,第32回 流体力学講演会,2000.
- 6) Cengiz Camci, Frank Herr. Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet. Journal of Heat Transfer, 2002, 124, p770-782.
- 7) N・ラジャラトナム, 野村安正. 噴流. 森北出版, 1981.
- 8) 吉田邦夫, 仲町一郎, 庄司不二雄. ガス燃焼の理論と実際. 省エネルギーセンター, 1992.

記号一覧

P_L , P_R	連結管両端圧力
D	燃料ガス吹出口幅
L ₁	燃料吹出口-スロート入口間距離
L ₂	スロート長さ
Т	スロート入口幅
α	スロート開き角
β	酸化剤吹き込み比
f	振動周波数
Fa	噴流のスロート壁への付着力
F _d	噴流の連結管からの剥離力
ΔQ	自励振動燃焼の安定流量範囲
Н	伝熱盤1区間への入熱量
ΔW	伝熱盤1区間への入水量
T _{out}	伝熱盤1区間の出口水温度
T _{in}	伝熱盤1区間の入口水温度
С	水の比熱

技術紹介

温度可変ヘリウム液化冷凍設備

Variable Temperature Helium Liquefier/Refrigerator System

熊木卓也*	檜垣春弘*	撫 原 浩 嗣**
KUMAKI Takuya	HIGAKI Haruhiro	NADEHARA Kouji

1. はじめに

核融合科学研究所(National Institute for Fusion Science, 以下「NIFS」と略す)では、主として大型超伝導機器の 研究および試験と旧設備の老朽化のため、ヘリウム液化 冷凍設備を更新した。更新後は、旧設備と同様にヘリウ ム液化能力として 250 L/h以上,4.5 K での冷凍能力 600 W以上,4.5 K以下の超臨界ヘリウム循環能力 50 g/s 以上の能力を有することが要求された。さらには、4.5 K レベルでの液化冷凍能力に加え、高温超伝導体や MgB₂ などのマグネット応用に関する開発研究のため、4.5~ 300 K の任意の温度に設定されたへリウムガスを寒冷と して供給できることも新たに要求された^{1,2}。

当社は 2015 年に、これらのヘリウム液化冷凍能力につ いての要求を一つのコールドボックス内で満たした、温 度可変ヘリウム液化冷凍設備(以下「本設備」と略す) を構築し NIFS に納入した。本設備では、ヘリウムガス 循環圧縮機、コールドボックスおよび制御システムを更 新し、他方、バッファタンク、液体ヘリウム貯槽、液体 窒素貯槽およびヘリウムガス回収・精製装置は旧設備を 再利用している。

2. 設備の概要

2.1 設備の構成

本設備のコールドボックス周辺概略系統を図1に示す。 コールドボックス(Linde Kryotechnik 社製)は、膨張ター ビン2台を備えたクロードサイクル型液化冷凍機であり、 熱交換器(図1HX1~HX5)および不純物除去のための 20K・80K吸着器が設置されている。本設備の特徴とし て、旧設備では寒冷発生用と超臨界へリウム発生用に分 かれていたコールドボックスを、気液分離器(図1 (2)) に4.5 K以下の超臨界へリウムが発生可能な熱交換コイ ルを内蔵することで一つのコールドボックス内に収め ている。さらに、任意の温度のヘリウムガスを生成する ため、各温度レベルに対応した供給弁(図1:V1~V5) を設置し、それらからのヘリウムガスを混合することで 4.5~300Kのヘリウムガスを実験設備に供給できる機能

図1 本設備の概略系統 (コールドボックス周辺)

^{*} オンサイト・プラント事業本部 PEC SCE プロジェクト部

^{**} オンサイト・プラント事業本部 プラント事業部 SCE 営業部

を有する。従って、液体ヘリウムのみならず超臨界ヘリ ウムおよび温度可変ヘリウムガスを一つのコールド ボックスで供給することが可能となり、設備の省スペー ス化も図られた。実験設備から戻されたヘリウムガスは、 その温度に応じて回収弁(図1V6~V10)より熱交換器 またはヘリウム加温器側に回収され、常温に戻された後 再び系内を循環する。

ヘリウムガス循環圧縮機(Kaeser Kompressoren 社製) は、油噴射型スクリュー圧縮機であり、循環流量 101.7 g/s, 吐出圧力 0.95 MPa である。圧縮機の消費電力は更 新前の 450 kW から 239 kW と約 47 %削減され、旧設備 と同等以上の性能でありながら大幅な省電力化が図ら れている³⁾。

2.2 制御システム

本設備の制御システムには,当社開発のディジタル計 装システムを採用した。図2にシステム構成を示す。

図2 システム構成図

制御コントローラには,産業用コンピュータの標準バス規格の一種であるコンパクト PCI システムを採用し,制御 CPU や入出力機器との通信部を二重化して信頼性を向上させている。

設備状況の監視や運転操作, データ収集を行う SCADA (Supervisory Control and Data Acquisition) システムには 当社開発の HITS (Human Interface Tool System) を採用 し, マルチ画面表示や構内 LAN を経由した Web 監視も 可能である。

入出力機器は、コールドボックス近傍に設けた入出力 盤内に収納し、制御コントローラは、HITSのインストー ルされた運転操作用 PC とともに約50m離れた空調設備 のある制御室に設置している。入出力機器と制御コント ローラは Ethernet で接続することにより省配線化、信頼 性向上を図っている。

2.3 性能確認試験

本設備を設置後,性能確認試験を実施した³⁾。本設備 の仕様値および性能確認試験結果を表1に示す。

ヘリウム液化量は、液体ヘリウム貯槽(図1(1))の 液面上昇により測定し278.9 L/hの性能を確認した。4.5 K 冷凍能力は、気液分離器(図1(2))のヘリウム液面 を一定に保つようにヒーター制御し、670 Wの性能を確 認した。超臨界ヘリウム冷凍能力は、超臨界ヘリウム供 給・回収ポート(図1(3)および(4))に試験用ヒーター を設置し、407 W、供給温度4.42 K(0.79 MPa)、流量51.3 g/sの性能を確認した。また、同図(5)、(6)の温度可変へ リウム供給・回収ポート(図1(5)および(6))にも試 験用ヒーターを設置し、各温度レベルからのヘリウムを 混合することで20 K および40 K に制御されたヘリウム を生成・供給し、それぞれ1085 W(流量24.8 g/s)お よび1603 W(流量33 g/s)の冷凍能力を有することを 確認した。

表1 本設備のヘリウム液化冷凍能力

項目	仕様値	試験結果
ヘリウム液化能力	250 L/h 以上	278.9 L∕h
4.5 K 冷凍能力	600 W 以上	670 W
超臨界ヘリウム	350 W, 50 g/s 以上	407 W, 51.3 g∕s
冷凍能力	供給温度 4.5 K 以下	供給温度 4.42 K
20 K 冷凍能力	1000 W, 18 g/s 以上	1085 W, 24.8 g⁄s
40 K 冷凍能力	1500 W, 20 g/s 以上	1603 W, 33 g⁄s

3. まとめ

超伝導マグネットを中心とした多様な実験に対応でき る様、液体ヘリウムを含め幅広い温度のヘリウムガスが 供給可能なコールドボックスを含む設備を構築し、NIFS に納入した。性能確認試験において、本設備が仕様値以 上の能力を提供できることを確認した。

本設備を利用することで,超伝導マグネットを利用し た核融合や加速器の将来的な技術開発につながること が期待される。

参考文献

- 三戸利行他.大型超伝導実験用温度可変低温設備,低温工 学・超電導学会講演概要集,2014,90,p129.
- 2) 岩本晃史 他. NIFS 液化冷凍設備の更新と実験設備の増設, 低温工学・超電導学会講演概要集, 2015, 91, p32.
- S. Hamaguchi *et al.*, Commissioning Test Results of Variable Temperature Helium Refrigerator/Liquefier for NIFS Superconducting Magnet Test Facility, IEEE Transactions on Applied Superconductivity, 2016, Vol.26 Issue3, Article# 9500404

技術紹介

超臨界流体クロマトグラフによる油分分析

Oil Analysis by Supercriticalfluid Chromatography

Ŀ	村	隆	裕*	
TAI	KAH	RO	Kamimura	

1. はじめに

技術本部 分析技術センターでは,大陽日酸グルー プ各事業所で製造された圧縮ガスや液化ガスの品質 管理を目的として,ガス中の油分分析を行っている。

試料ガスをサンプリングする際は, 複数の方法か ら、最適なものが選択される。圧縮ガス中の油分を 分析する場合は, 試料ガスを吸着剤に流通させ, 吸 着した油分を抽出溶媒で回収する。液化ガスの場合 は, 試料をステンレスペール缶に採取し, 蒸発後の 残渣を抽出溶媒で回収する方法と,試料中の油分を 粒子として金属フィルターに捕集し、抽出溶媒で回 収する方法がある。油分の測定には,回収された油 分が炭化水素の混合物である(C-H 基を持つ)こと を利用し、フーリエ変換赤外分光法を用いる。この 方法では油分を抽出する際の溶媒に,同じ吸収帯を 持つ(C-H 基を持つ)物質を使用することができない ため,四塩化炭素やフロン系の溶媒を用いる必要が ある。しかしこれら溶媒は、環境・人体への負荷が 大きく, 取扱いについても, 規制が厳しくなってい る。そこで今回, 超臨界流体クロマトグラフ (Supercriticalfluid Chromatography, 以下 SFC^{1), 2)}) を導入し、非ハロゲン系溶媒を使用した油分分析法 を開発したので紹介する。

2. 超臨界流体クロマトグラフ

SFC のキャリヤとして用いられる超臨界流体は, 気体の拡散性と液体の溶解性を併せ持っているため, 液体を移動相とする従来の高速液体クロマトグラフ による分析と比べ,短時間分析や分離度の高いクロ マトグラムを得ることができる。代表的な超臨界流 体の移動相は二酸化炭素である。比較的温和な条件 (臨界温度 31.3 ℃,臨界圧力 7.38 MPa) で超臨界状 態となることができ,超臨界状態では n-へキサンと 同等レベルの溶解力を持つ。また毒性が無く,不燃 櫻 井 勇 斗** HAYATO Sakurai

性であり、安価であるといった利点を有する。今回 の実験で使用した油分試料の前処理装置とSFC分析 システムについて説明する。

3. 実験

油分濃縮装置と SFC 分析システムを製作した。図 1 に油分濃縮装置を,図2に SFC の流路図の流路図 を示す。

図2 SFC 流路

背庄乡

図1の油分濃縮装置は,溶媒量を調整するために 用いるもので,乾燥させ,溶媒種を変更することが 可能である。試料導入セルにセットした油分抽出溶 媒に,ヒーターで加熱した高温の窒素ガスを噴きつ け,濃縮・乾燥を行い,試料導入セル下部に設置さ れた SFC 用バイアル (SFC 分析用少試料容器)に油 分を回収する。本装置の特徴を下記に示す。

- 1. 濃縮した油分を直接 SFC 用バイアルに回収する ため、容器移し替えによる損失を抑制できる。
- 装置内部で、試料に高温窒素ガスを吹き付けて 乾燥させることにより、外部汚染を遮断できる。

^{*} 技術本部 分析技術センター 受託分析課

^{**} 開発・エンジニアリング本部 ガスエンジ統括部 エンジニアリング部 エンジ課

3. 試料に吹き付ける窒素ガス温度と,SFC用バイ アルの加熱温度に差をつけたことにより,突沸の ない最適な条件で蒸発できる。

濃縮・乾燥した油分は,一定量の希釈用溶媒で溶 解させ,適正な濃縮率に調整された試料を得る。試 料は図2のSFC流路内のオートサンプラーより導入 し,超臨界流体二酸化炭素キャリヤで分離されたク ロマトグラムを得る。

3.1 油分検量線と検出下限

濃度 20~1000 ppm (v/v) の範囲において,油分標 準物質 C₃₂H₆₆(ドトリアコンタン) と機械油(He 圧 縮機用)を測定し,検量線の直線性と検出下限を検 証した。SFC 分析条件を表1に示す。

表 1 5	SFC 分析条件
溶媒	ヘキサン
キャリヤ流速	2.5 mL/min
背圧弁圧力	27 MPa
カラム	SFCpak Crest C18T-5(日本分
	光製)
	内径 2.1 mm 全長 100 mm
恒温槽温度	80 °C
FID 検出器温度	150 °C
背圧弁後段ヒーター	80 °C
試料導入量	10 µL

3.2 油分濃縮実験

アセトンはヘキサンと比べ,極性が高いため,SFC において,油分との分離能が低い。一方,アセトン の沸点は低くて揮発しやすいため,2種の溶媒を, 油分抽出用アセトン,油分測定用ヘキサンとして使 い分けた。

試料中の油分が赤外分光分析計の検出下限 0.3 ppm (v/v) と同等となるよう 2.1 の実験結果をもと に濃縮量を調整した。実験条件を表 2 に示す。

表 2 油分濃縮装置条件 窒素ガス流速 10 L/min 10L ガスシリンダー ガラスビーズ φ1 mm シリンダー温度 390 ℃ 出口配管加熱温度 200 °C 80 °C SFCバイアル加熱温度 試料導入量 アセトン 50 mL He 圧縮機用機械油 油分添加量 0.05 mg, 0.10 mg SFCバイアル添加溶液 ヘキサン 0.1~1 mL

4. 結 果

4.1 油分検量線と検出下限

へキサン中の標準物質 C₃₂H₆₆と機械油(He 圧縮機 用)1000 ppm (v/v)のクロマトグラムを図3に示す。 縦軸をピーク強度,横軸を溶出時間とし,C32H66 を赤線,機械油を青線で示している。尚,機械油の クロマトグラムはピークがブロードであるため,拡 大したものを図3右上に示す。図3より純物質であ るC₃₂H₆₆がシャープな形状を示すのに対し,機械油 は様々な質量数の炭化水素から構成されるため溶出 時間が広がる。検量線を図4に示す。

標準物質,機械油の検量線は一致しており,ピー ク形状が違っていてもピーク面積値は同じであるこ とが確認できる。検出下限は SN 比 2 で 30 ppm(v/v) となり,赤外分光分析計と同等の感度を得るため必 要な濃縮率は 100 倍であった。

図3 C32H66・機械油のクロマトグラム

図4 検量線(C₃₂H₆₆と機械油)

4.2 油分濃縮実験

4.1 の結果より, アセトン 50 mL を蒸発後に, SFC バイアル内に濃縮された油分を 0.5 mL のヘキサン で溶出することで濃縮率を 100 倍とし, 妥当性を検 証した。

図5に油分(機械油)を添加したアセトン50 ml を濃縮し、ヘキサン0.5 mL に希釈した溶液を分析し たクロマトグラムを示す。油分添加量は0,0.05,0.1 mgとし、それぞれ赤線、黄線、緑線で示す。

機械油 5 mg, 10 mg を添加した標準試料と比較し, 面積値が良く一致した。100 倍濃縮により, SFC に よる油分分析の感度を 0.3 ppm(v∕v)未満に向上さ せることができた。

図5 油分添加後のアセトンのクロマトグラム

5. まとめ

超臨界流体二酸化炭素をキャリヤとしたクロマト グラフにて,四塩化炭素等のハロゲン系溶媒を使用 することなく,油分を分析することが可能となった。 また,油分濃縮装置で試料中の油分を濃縮すること で,赤外分光分析計と同感度で油分分析を可能とし た。今後,超臨界流体の分析流路内で,抽出と濃縮 を同時に行い,試料中油分を全て分析計に導入可能 な超臨界流体抽出(Supercritical fluid Extraction)を 組み合わせた分析システムについて開発を始め,更 なる感度向上・効率化を検討中である。

参考文献

- 平田幸夫,坊之下雅夫,前田恒昭,保母敏行,右手浩一. 超臨界流体のすべて.初版,テクノシステム社,2002, p293-312.
- 2) 坊之下雅夫, 堀川愛晃. 超臨界クロマトグラフィー, ぶんせき, 2009, 420 (12) p669-677.

技術紹介

PET ガン診断薬原料「水-¹⁸O」製造プラント3号機

No.3 Plant for Water-¹⁸O the Starting Material of PET Cancer Imaging Agent

石井政輝* ISHII Masaki 木 原 均** KIHARA Hitoshi

1. はじめに

PET (Positron Emission Tomography: ポジトロン断 層撮影)診断は、がんの早期発見と予後観察に威力 を発揮しており、先進国のみならず、新興国も含め た世界中で広く普及している。これに伴い PET 診断 薬原料である酸素-18 安定同位体標識水「水-¹⁸O」の 世界需要は急増し、既に年間 1000 kg レベルに達し たとも言われている。

この状況を鑑み,国内唯一の水-¹⁸O 製造メーカで ある当社は2013年竣工の2号プラントに続き,世界 最大規模の3号プラントを新たに山口県周南市に建 設し(図1),2016年より製品の出荷を開始した。プ ラントの仕様を表1に示す。

3 号プラントは、プロセスの改良による収率の向 上の他、新方式の同位体スクランブラなど、新たな 技術が加えられている。

2. 当社の水-¹⁸O 製造技術

深冷酸素蒸留法は世界で唯一当社が実用化した技術であり、従来の水蒸留法に比べ不純物の少ない水-¹⁸Oを低消費エネルギで製造できる。プロセスは主に高純度酸素精製部、全長数百mを超える同位体蒸留カスケード、および酸素を水に変換するための水素添加反応装置からなり、天然存在比 0.2 %の¹⁸Oを98%以上に濃縮する^{1,2)}。

同位体蒸留カスケードにおける目的成分¹⁸O2は原

料中にわずか 4.2 ppm しか存在しないが,同位体ス クランブルにより ${}^{16}O{}^{18}O$ の一部から ${}^{18}O_2$ を生成し, 効率的に ${}^{18}O_2$ を濃縮できることが本プロセスの特長 である ${}^{1,2,4)}$ 。

図1 水-¹⁸O 製造プラント 3 号機

	3 号機	2 号機	1 号機
所在地	山口県周南市	千葉県袖ケ浦市	千葉県市原市
年産量 (kg-水)	300	200	100
¹⁸ O 濃縮度 (%)	≥ 98	≥ 98	≧97 (計画時)
起動時間 (日)	180	140	180
保冷外槽 (m)	W12.5×D4.3×H70×2 基	$W8 \times D4 \times H70$	W7×D3.5×H70

表1 水-¹⁸O 製造プラントの仕様^{2,3)}

* 開発・エンジニアリング本部 プロジェクト推進統括部

超電導プロジェクト

** 開発・エンジニアリング本部 つくば研究所 分離技術部 -13-

3. 3 号プラントの特長

3 号プラントは, BCP (Business Continuity Plan:事 業継続計画)の観点から関東圏から離れた山口県周 南市に建設し,万が一の地域的な災害等発生による 装置停止リスクに備えている。

プロセスは,基本設計段階から1,2号プラントと 比較して大幅な収率向上を図っており,これにより 消費エネルギを約3割削減することに成功した。

一方で、プロセス改良に伴い同位体蒸留カスケー ドの全長が大きくなったことから、ホールドアップ 増加による起動時間(装置起動から製品採取開始ま での期間)の長期化が懸念された。そこで、気液処 理量が小さい同位体蒸留に適した規則充填物を新た に開発した⁵⁾。この充填物は、従来難しいとされて きた小塔径充填塔への高比表面積規則充填物の採用 を可能とし、低圧力損失、低ホールドアップを実現 している。この充填物の採用により、起動時間は1, 2 号プラントと同等の約半年に抑えることができた。

4. 起動シミュレーション

当社の同位体分離技術は、ダイナミックシミュ レーションにより、基本設計段階から最適な起動手 順の検討が可能であることが特長である。新たなプ ロセス、充填物を採用した3号プラントも予め計画 された手順により起動運転を行った。

図2および図3は、3号プラント起動後それぞれ 35日後、140日後における同位体蒸留カスケード内 の濃度分布を示したものである。図中に示したプ ロットは質量分析計による実測値、線はシミュレー ションによる予測値である。

これらの図からわかるように、シミュレーション は同位体蒸留カスケードを構成する各蒸留塔の運転 状態、および同位体スクランブルの状態を基に、特 徴的な同位体濃度分布を予測しており、得られた実 測値はこの予測の有効性を示している。

装置はその後も計画通り¹⁸Oの濃縮を続け,図3 の状態から約1.5カ月後,起動後約半年で製品採取 を開始した。

5. まとめ

近年,新しい PET 診断薬の開発が進んでおり,ア ルツハイマー,パーキンソン病,心疾患などの診断 に広がりつつある。当社は水-¹⁸O 製品化センターを 当社 SI イノベーションセンター(東京都多摩市, 2015 年設立)内に移設し,GMP (Good Manufacturing

図2 起動後35日目の同位体濃度分布

図3 起動後140日目の同位体濃度分布

Practice:適正製造基準)に準拠した製品管理システムで今後も増加する水-¹⁸O需要に備えている。

本報で紹介した3号機は¹⁸O濃縮度・製造量とも に仕様を満足し,製造を継続中である。今後も水-¹⁸O の安定供給を継続するとともに,¹⁸O濃縮技術を活 かした新たな同位体分離技術開発にも注力していく。

参考文献

- 木原均,神辺貴史,林田茂,川上浩.酸素同位体¹⁸O分 離装置-プロセスの開発-.大陽日酸技報,2004,23, p14-19.
- 神辺貴史,木原均,林田茂,川上浩.酸素同位体¹⁸O分 離装置-商業化実証装置の開発-.大陽日酸技報,2004, 23, p20-25.
- 3) 石井政輝,五十嵐健大. PET ガン診断薬原料「水-¹⁸O」 製造プラント2号機.大陽日酸技報,2014,33,p21-22.
- 4)大陽日酸株式会社.酸素同位体重成分の濃縮方法および装置.特許第4467190号.2010-05-26.
- 5) 大陽日酸株式会社. 規則充填物. 特許第 5661215 号.2015-1-28

技術紹介

ITER 用超臨界ヘリウム循環ポンプの試験設備

Performance Test Facility of Super Critical Helium Circulator for ITER

青木洋	享*	宮	井	怜*	熊	木	卓	也*	信	時	実*
AOKI Jun		MIY	'AI R	you	KUN	MAK	I Tak	uya	NO	BUT	OKI Minoru

1. はじめに

ITER(国際熱核融合実験炉)は、世界7極の国際 協力の下で仏カダラッシュでの建設が進められてい る。ITER の低温分配システムは、冷媒として用いら れる超臨界ヘリウムを7基の Auxiliary Cold Box (以 下 ACB)において生成して, 被冷却体である各超伝 導コイルへと供給する機能を有し、インド極である ITER-India (Institute for Plasma Research)がシステム の調達を担当している。各 ACB において使用される コールドサーキュレータは,世界最大級の超臨界へ リウム循環性能が必要とされており、当社は、この コールドサーキュレータの性能試験設備である Test Auxiliary Cold Box (以下 TACB)を ITER-India より受 注した。2015年12月に試験場所である量子科学技 術研究開発機構(当時は日本原子力研究開発機構) 那珂核融合研究所(以下 OST 那珂研)での性能試験 を終了し, 2016年3月に納入した。

2. 設備概要

2.1 プロセス関係

本設備の概略系統図を図1に示す。TACBに必要 とされる機能は、2台のコールドサーキュレータ (CC1及びCC2)を切り替えて性能試験を行うこと、 将来的に超電導コイル冷却を行えるよう ITER 実機 と同等の流路構成を有すること、高精度な温度・圧 力・流量の計測機能を有すること、及び低ヒートロー ド設計等である

TACB の冷却には、QST 那珂研のヘリウム冷凍機 (冷凍能力 5 kW at 4.5 K)が用いられた。表1に示 すように、コールドサーキュレータの運転による熱 負荷が冷凍機負荷の大部分を占め、冷凍機と TACB との接続に用いられる移送配管への入熱等を除くと、 超臨界ヘリウム循環ループとしては、36W の低侵入 熱を実現することが必要とされた。このために、

* オンサイト・プラント事業本部 PEC SCE プロジェクト部

TACB には液体窒素冷却による輻射シールドを保有 し,低温弁等の侵入熱源となる構成機器は,輻射シー ルドからの熱アンカーを設けることで侵入熱の低減 を図った。

表1 TACB の運転モード

運転モード	CC 負荷	循環系入熱	移送配管入熱	ヒータ調整代
100%スピード (設計点)	3998 W	36 W	94 W	857 W
110%スピード (大流量)	4757 W	36 W	94 W	97 W
110%スピード (高ヘッド)	4193W	36 W	94 W	661 W
100%スピード (1000kPaA)	4419 W	36 W	94 W	436 W
100%スピード (吸入 6.0 K)	3926 W	36 W	94 W	928 W

循環する超臨界ヘリウムは,TACB内の液化ヘリ ウムを貯留する容器(LHe-bath)内に設置された浸 漬式アルミプレートフィン熱交換器において冷却さ れる。それらの寒冷源は、ヘリウム冷凍機からの中 圧低温ヘリウムガスをジュールトムソン膨張により 液化させることによって生成する。LHe-bath内の液 体ヘリウムレベルはヒーターにより制御され,この ヒーター入力値がシステムとしての余剰能力に相当 する。

超臨界ヘリウム循環系統の運転圧力は,600~1000 kPa であり、ヘリウム冷凍機の高圧低温ヘリウムが ガス源として用いられ、LHe-bath にジュールトムソ ン膨張させることで運転圧力を調整した。

上述の要求仕様を満足することに加えてシステム としての運転裕度を確保するために,LHe-bath内の 熱交換機の上部空間には500 Lの液体ヘリウム容量 を考慮して LHe-bath の内容積は2852 Lとした。19 台の低温弁や LHe-bath を収納するために横置円筒 式コールドボックスが採用された。TACB の外観を 図2に示す。

図 2 TACB 外観(上)と内部機器(下)

2.2 計測制御系

コールドサーキュレータの性能評価は,流量・揚 程・断熱効率の3つのパラメータによって行われる。 流量計測にはオリフィス式流量計が採用され,理想 気体からのずれの大きい超臨界へリウムの流量計算 には,物性推算ソフトGASPAKTMを搭載した大陽日 酸製制御用コントローラ EzMPICS III を後述する横 河電機製 FA-M3 バス上に実装することで実現した。

コールドサーキュレータの設計断熱効率は 70 % であり、この値はコールドサーキュレータの出入口 の温度差に換算すると約 0.3 K に相当する。この小 さな温度差を精度良く計測するために、CERNOXTM 抵抗温度計による計測に加えて、サーキュレータ前 後に配置した蒸気圧式温度計と、蒸気圧温度計間の 差圧を計測することで計測精度を確保した。

TACB の制御システムは、ヘリウム冷凍機の制御 コントローラである横河電機製 CENTUM VP smallTM や、コールドサーキュレータの SIEMENSE 製 PLC との通信インタフェースを考慮して、横河電 機製 PLC (FA-M3)を採用した。CENTUM VP smallTM と FA-M3 は Ethernet、SIEMENS 製 PLC、温度変換 器 CABTF (Mii 製) と FA-M3 とは Profibus で接続さ れ、 TACB の状態監視や操作は横河電機製 FAST/TOOLS 及び当社製 HITS をインストールした パーソナルコンピュータで行うシステムを構築した。

図3 TACB 計測系のシステム構成図

3. 試運転結果

TACB単体の初期冷却運転は、2015年10月23日 より開始された。TACBのクールダウンカーブを図4 に示す。冷却重量は約2 ton である。冷却初期の温度 の高い状態においては、コールドサーキュレータの 循環性能が低いため、冷凍機からの中圧低温ヘリウム(80 K)による強制冷却により、コールドサーキュ レータをバイパスさせて冷却を行った。そのため、 タービン起動直前までの温度変化は、80Kレベルに 各部が収束する形態を示す。その後、冷凍機のター ビン起動を経て、2015年10月28日に液体ヘリウム の生成が確認された。

コールドサーキュレータの断熱効率は,100%ス ピード時において,設計値以上の性能が確認されて いるが,この時の運転時のLHe-bathにおけるヒー ター入力は27Wであった。この値は,表1に示し たヒーター調整代よりも低い。これは,冷凍機側で 冷凍能力を下げて運転していたことによるためであ り,必要とされる試験モードの全てが遂行されたこ とから,TACBは所定性能を発揮していたものと考 えられる。

4. まとめ

超臨界ヘリウム冷却は,高性能超伝導コイルの冷 却に不可欠な技術であり,本試験設備の設計・製造 過程で得られた技術を,今後の超伝導応用技術の更 なる発展に活かしていきたい。

温度履歴統合管理システム「CryoLibrary iMaster[®]」

Integrating Management System for Temperature Records "CryoLibrary iMaster""

1. はじめに

再生医療やゲノム医療の実用化が広がり,細胞,遺 伝子などの生体試料の品質管理が厳しく求められるよ うになってきている。そのため,生体試料の輸送時や 凍結保存時には,データロガーを設置して保存雰囲気 の温度を記録しているが,個々の工程におけるデータ は時間や温度の単位や保存形式が統一されていないた め,取り扱いが不便である。そのため,試料が全ての 工程で正確に温度管理されてきたかを把握することが 困難である。また,最近ではバイオバンクから病院や 研究所に,生体試料が拠点間で輸送されるケースが増 えてきており,誰が,いつ,どのように試料を管理し てきたのかを把握することが必要になってきている。

そこで当社は、生体試料が辿る各工程の温度履歴を 統合して、一つのデータシートに記録管理することが できるアプリケーションソフト「CryoLibrary iMaster[®]」 を開発した。

2. 概 要

CryoLibrary iMaster[®]では,拠点間の輸送に加えて, 凍結処理や保存中の環境だけでなく解凍処理,施設内 の移動環境の温度履歴も管理することができる(図1)。 記録結果を解析することで,どの工程に問題があった かを特定することができる(トレーサビリティの確立)。 本システムは,インターネットを通じてサーバーに データを保存することにより,離れた拠点でもデータ のやり取りが可能である。また,当社製品である自動 凍結保存システム クライオライブラリーと本アプリ ケーションソフトを一緒に用いることで,予備凍結槽 内と庫内の温度履歴も同時に記録することが可能であ る。

3. 特長

- (1) 複数の工程の温度データを、インターネットを 経由してサーバーに送り、1 枚の温度履歴シー トを作成することができる(図2)。
- (2) 実験結果に問題があったとき、どの工程に問題 があったか遡って検証することができる(ト レーサビリティの確立)。
- (3) 細胞加工製品の輸送や移植手術を行う際に、その試料が適正に取り扱われてきた証拠として提示できる(品質保証への貢献)。
- (4) クライオライブラリーと連動させることが可能で、予備凍結槽の温度履歴を自動取得できる。

4. 謝 辞

開発にあたり,幹細胞評価基盤技術研究組合及び日本医療研究開発機構(AMED)の委託事業を活用し, 国立成育医療研究センター研究所生殖医療研究部部 長阿久津英憲先生のご指導を賜りました。 (開発・エンジ^{*}ニアリング^{*}本部プ^{*}ロジ^{*}ェクト推進統括部 凍結保存7^{*}ロジ^{*}ェクト 馬瀬 輝)

<問い合わせ先> メディカル事業本部 バイオ・メディカル事業部 営業部 バイオ機器営業課 TEL. 03-5788-8675

プラズマ溶接システム 「サンアーク[®]プラズママイスター」

The Plasma Arc Welding System "SANARC[®] Plasma Meister"

1. はじめに

非消耗電極式溶接(プラズマ溶接)は、高品質の溶 接結果が得られやすいが、新規に専用の設備を導入す る必要がある。その課題を補うべく、新しいプラズマ 溶接システム「サンアーク[®]プラズママイスター」を開 発したので紹介する。

2. 概 要

プラズマ溶接法は、TIG 溶接法と比べて、熱ひずみ が小さく溶接速度を著しく向上することが可能な溶接 方法である。また、これまでの消耗電極式アーク溶接 やサブマージ溶接では、両面溶接が必要であったもの を片面溶接へ変更できるため、大幅な作業コストの低 減が図れる。

そこで、市販の TIG 溶接機を用いて、高品質・高能 率溶接を可能とした新しいプラズマ溶接システム「サ ンアーク[®]プラズママイスター」を日酸 TANAKA と共 同開発した。

3. 特長

(1) 制御方法

新開発の専用プラズマ制御装置により、市販の TIG 溶接機 1 台を制御することで、プラズマ溶接法を可能 としている。また、市販の TIG 溶接機をもう一台追加 して、パイロットアーク用とメインアーク用の 2 台に 分けて使用することもできる。

(2) パイロットガス

プラズマ化しやすいアルゴンガスを用い,本溶接の 際は,深溶け込みが得意なアルゴンと水素,又はアル ゴンとヘリウムの混合ガスへ切り替えて使用すること ができる。また,過大なガス流量が瞬間的に流れてし まうことで,アークが乱れてしまう問題が発生するが, これを「新しい発想で,アークの乱れがまったく発生 しない方法」を開発し採用している。

(3) クレータ処理方法

ビードの凹みを抑えるために,パイロットガス流量 を調整することが可能となっている。 (4) ワイヤ送給機能

サンアーク[®]TIG マイスターのフィラーユニット,ワ イヤ制御装置,ワイヤ送給装置が共有可能となっている。

4. 用途

ステンレス鋼, ニ相ステンレス鋼, ニッケル合金鋼, 炭素鋼などの金属の接合に使用する。

二相ステンレス鋼のビード外観を図1に、オーステ ナイト系ステンレス鋼の溶け込み形状を図2に示す。 一般のTIG溶接では、板厚8mmのI型突合せ溶接につ いて、1パスで完全溶け込みを得ることは不可能である が、本システムではそれを可能にしている。また、シー ルドガスは、大陽日酸のPHサンアーク(Ar+H₂)、お よび専用のシールドガスを適用することで、本システ ムの高度な特長を十分に発揮することが出来る。

 表ビード 裏ビード
 図1 二相ステンレス鋼 t8 mm (ビード外観写真) アルゴン PH サンアーク
 図 2 オーステナイト系 ステンレス鋼 t8 mm (同一条件の溶け込み比較)

5. システム構成

①専用プラズマ制御装置, ②プラズマ溶接トーチ
 ③ワイヤ送給制御および送給装置,
 ④シールドガス(専用サンアーク),
 ⑤市販の TIG 溶接機

図 3 外観写真(左から①②③④) (開発・エンジ^{*}ニアリンガ^{*}本部 山梨研究所

ガスアプセンター 開発一課 和田勝則)

<問い合わせ先>

日酸 TANAKA 株式会社 溶接機材営業部

TEL. 03-3500-0940

凍結保存容器用 新型液面センサおよびコントローラ 「新型レベルマスター(型式:CLLC-7)」

A New Liquid Level Sensor and Controller for Liquid Nitrogen Cryopreservation Container "The New Level Master (Model: CLLC-7)"

1. はじめに

医療,製薬,培養,食品等の分野で使用される 凍結保存容器は,液体窒素の液面高さを常に最適 値に維持することにより,被保存物の適正な極低 温環境を提供している。適正な環境温度は,液面 位置を検出する液面センサ,容器内の温度を計測 する温度センサ,および液面や温度を維持管理す るコントローラにより維持され,この構成機器を まとめて,レベルマスターと呼んでいる。

今回,従来品にも置き換え可能で,より操作性 の高い新型の液面センサおよびコントローラを開 発,商品化したので紹介する。

2. 新型液面センサ

(1) 液面検出方式の選定

従来の液面センサは,過去に自社開発したフロ ート式を約20数年間使用してきたが,液体窒素に よる極低温環境に長く晒されることにより,氷霜, 浮遊物の侵入によるフロート部の引っ掛かりや, 液面位置検出部の不具合による液面位置の誤検出 があった。

これらの問題を克服すべく,新型の液面センサ の液面検出部は,容器内の極低温環境に耐えうる 白金測温抵抗体を採用し,機械的駆動部を除去し た。新型品は従来品との置き換えを可能とし,容 器内への取付けや信号配線の取出し方法などの互 換性に配慮した。

(2) 液面位置検出精度の向上

測温抵抗体を用いた場合,抵抗値変化を捉えて 液面位置を検出する方法は知られているが,凍結 保存容器内は対流がなく,液面の近傍では特に抵 抗値変化が少ない。また,凍結保存物の頻繁な出 し入れや,液体窒素の供給による急激な液面脈動 により,測温抵抗体を使用するだけでは液面位置 の誤検出を招く虞があった。

そこで、より抵抗値の大きい測温抵抗体を採用 し、抵抗体の配置間隔を最適にしたことにより、 容器内の液面近傍でも誤検出することなく、高精 度(±1 mm)な液面位置の検出を可能とした。

図1 新型液面センサ

表1 液面センサ (SLS-5M) 仕様

検出素子	白金測温抵抗体			
外形寸法	ϕ 14 × L 210.5 mm			
	ケーブル長さ 5m			
クーノル	仕上外径 φ4.6 mm			
重量	約300g(5mケーブル含む)			

3. 新型コントローラ

コントローラに搭載した主な新機能を以下に紹 介する。なお、コントローラは従来品と互換性を 有する。

 (1) 断線又は短絡等の異常発生時の液面高さの 維持機能

コントローラは,液面高さが下限レベルを下回 ると,容器内に液体窒素の供給を開始し,上限レ ベルを上回ると供給を停止する。

万が一,下限レベルの検出素子に断線又は短絡 等の異常が発生した場合,通常コントローラは液 体窒素を自動的に供給できなくなる。

このような異常発生時には、下限Lレベルより 液位の高い、上限Hレベルを起点とした供給制御 方法に自動的に切り替え、容器内の液体窒素の液 涸れなく、被保存物を極低温環境下に維持し続け る機能を有する。

図2 断線又は短絡等の異常発生時の 液面高さの維持機能

- (2) LCD パネルの搭載
 LCD パネルを搭載し、以下の視認性を向上した。
 - 警報履歴, 蒸発量表示
 - 英語, 日本語切替え表示
 - 液面高さの連続表示 (mm, %切替え,バーグラフ表示)
 容器内の温度表示(2点)

図3 新型コントローラ

(3) その他の機能

a) 予冷機能

液体窒素の供給前に配管を予冷し,熱ロスによ る容器内の被保存物の温度上昇を防止する機能を 有する。

b) コントローラの連動供給機能

容器毎の複数台のコントローラを連結し,液体 窒素の供給前に配管の末端で一括予冷を行い,液 面高さが上限レベルに達していない容器全てに順 次供給することで,供給時の蒸発ロスを抑制し, 液体窒素の消費量を軽減する機能を有する。

c) 換気設備への起動接点出力

液体窒素の供給と連動して換気設備を起発停す る機能を有する。

d) タイマーによる計画供給

ウィークリータイマーを内蔵し,液体窒素を計 画的に供給できる機能を有する。

e) イベントロギング, データロギング

運用中に発生した操作履歴,警報履歴および状 態ロギングの機能を有する。

表2 コントローラ(CLLC-7)仕様

電源電圧	100 VAC 50/60 Hz
消費電力	35 VA 以下(ライト,ソレノイド除く)
外形寸法	縦 60 mm×横 250 mm×奥行き 325 mm
重量	約 2.5 kg
設置環境	室内
这个拍校	EN61326-1
週百規恰	(測定用,制御用およびラボ用電子機器)

4. まとめ

凍結保存容器で使用される液面センサの液面 検出方式を見直し,商品化を実現した。これによ り,凍結保存容器に対する信頼性は大幅に向上し, 顧客に競合他社より優れた製品の提案が可能とな った。

(開発・エンシ゛ニアリンク゛本部 技術サポートセンター

電気技術部 設備計装課 赤井 康昭)

<問い合わせ先>

メディカル事業本部 バイオ・メディカル事業部 営業部 バイオ機器営業課 TEL. 03-5788-8675

最新型小型スペースチャンバー

The Latest Small-Size Space Chamber

1. はじめに

当社のスペースチャンバーは、地球上で人工衛星等 の試験をするための装置で、宇宙空間の冷暗黒・超高 真空などの極限環境を忠実に再現している。今回、最 新型の小型スペースチャンバーを帝京大学殿に納入し たので、ここに紹介する。

2. 特長

(1) 液体窒素消費量の少ないシュラウド*1

図1の概略系統図に示すように,液ヘッド差により 液体窒素を循環させるフリーボイリング冷却方式の採 用で液体窒素消費量を削減。

(2) 高熱負荷に対応可能なシュラウド

シュラウドの二重円筒間に液体窒素を溜め込むこと で均一な温度分布,高熱負荷対応。

(3) 温度制御範囲の広いベースプレート**2

液体窒素とヒータの併用方式により、広範囲の温度 制御が可能。

(4) 温度制御性の向上

ヘッドタンクへの液体窒素供給は,液面制御方式の採 用により,ヘッドタンク,ベースプレートの圧力変動が 抑制され,極めて安定した温度制御性を実現。

(5) 制御システム

図2に示すように、本制御システムは当社開発の制御 コントローラ(EzMPICSIII)および制御ソフト(HITS) を採用。HITS は機能的かつ直感的な操作で制御可能。 また、自動運転機能を有し、ヒューマンエラーを回避。 更に、パターン制御・データ収集・トレンド表示機能等 を標準装備しており、CSV 形式でのデータ出力も可能。

3. 仕様

主要な仕様を表1に、外観を図3に示す。

表1 主要仕様

————————————————————————————————————	
型式	横置円筒片側扉ヒンジ開閉式
到達真空	5.0×10 ⁻⁵ Pa 以下/5 時間以内
真空容器直胴部寸法	i ϕ 1500 mm \times L 1800 mm
シュラウド内側寸法	i ϕ 1300 mm \times L 1700 mm
シュラウド型式	アルミ合金内面黒色塗装二重 円筒式, ヒータ付き
シュラウド定常時温度	100 K 以下
ベースプレート寸法	600 mm×600 mm
ベースプレート温度範囲	-100 °C~+100 °C
ベースプレート温度制御精度	±2 ℃以内(ベースプレート上 の1点において)

図3 外観写真

※1 宇宙空間を模擬する液体窒素で冷却された黒色面
 ※2 試験体を乗せる温調プレート
 (オンサイト・プラント事業本部 PEC SCE プロジェクト部
 吉田俊之,中島章治,小原浩二)
 <問い合わせ先>

オンサイト・プラント事業本部 プラント事業部 SCE 営業部 営業課 TEL. 044-288-6937

最近公開された出願特許

2015年10月1日~2016年12月31日

特開2015-176882	FRP製クライオスタット	特開2016-044894	多段液溜式凝縮蒸発器
特開2015-178861	単線状部材の固定方法、ヒーターユニット及び	特開2016-052967	透明導電膜及びその製造方法
	ヒーター	特開2016-054068	透明導電膜の製造方法
特開2015-182706	イオンエンジン試験装置	特開2016-057146	サンプリング装置、ボックス機構、及び
特開2015-182717	宇宙環境試験装置		サンプリング方法
特開2015-183922	空気液化分離方法及び装置	特開2016-059877	除湿方法及び装置
特開2015-187525	ブレイトンサイクル冷凍機、及びターボ圧縮機	特開2016-059888	規則充填物
	の発熱部の冷却方法	特開2016-061665	低温液化ガス燃焼・爆発試験用液化容器
特開2015-191322	冗長化システム、故障検出装置、冗長化方法	特開2016-065827	酸素センサ
特開2015-196147	ガス回収装置	特開2016-066767	気相成長装置
特開2015-202462	排気ガス処理システム	特開2016-068126	溶接用トーチ及び変換用アダプタキット
特開2015-203916	冗長化システム、冗長化方法	特開2016-075326	シリンダーキャビネット
特開2015-207627	気相成長装置	特開2016-076610	気相成長装置における基板搬送方法及び
特開2015-208718	気液反応方法及びアミノシランの製造方法		装置
特開2015-209994	過冷却凍結装置及び方法	特開2016-080000	低温液化ガス充填装置
特開2015-209995	過冷却凍結装置及び方法	特開2016-080287	溶融バーナ、溶融バーナ装置、粉体溶融方法、
特開2015-212558	ガス供給方法		及びガラスの製造方法
特開2015-212565	シリンダーキャビネット	特開2016-080484	有害ガス検知方法及び装置
特開2015-215234	端子形状調整用冶具	特開2016-082010	シリコン窒化膜の製造方法及びシリコン
特開2015-218340	気相成長装置		窒化膜
特開2015-218354	気相成長装置のヒータ固定構造、該ヒータ固定	特開2016-082923	大腸菌変異体、抽出液、無細胞タンパク質
	構造を備えた気相成長装置		合成反応液、安定同位体標識タンパク質合成
特開2015-222551	高圧ガス容器管理システム及び管理装置		キット、及び、安定同位体標識タンパク質の
特開2016-003929	硫化カルボニル濃度測定装置、及び硫化		製造方法
	カルボニル濃度測定方法	特開2016-083619	無機質球状化粒子製造装置、及び無機質
特開2016-004933	炭化珪素除去装置		球状化粒子製造方法
特開2016-004982	半導体製造装置構成部材の清浄化方法	特開2016-083648	排ガス処理装置
特開2016-006236	浸炭用雰囲気ガスの生成方法	特開2016-087224	凍結治療装置
特開2016-007607	摩擦攪拌接合方法、及び摩擦攪拌接合装置	特開2016-090464	酸素安定同位体濃度測定方法、及び酸素安定
特開2016-008778	空気分離方法、及び空気分離装置		同位体濃度測定装置
特開2016-010805	金属キャスク用伝熱銅フィンの溶接方法及び	特開2016-094965	燃料ガス充填システム及び燃料ガス充填
	伝熱銅フィン付き金属キャスク		方法
特開2016-011845	金属キャスク用伝熱銅フィンの溶接方法及び	特開2016-103658	プラズマエッチング装置
	その溶接装置	特開2016-107307	溶接装置及びプラズマ溶接方法
特開2016-017678	排ガス処理設備	特開2016-109175	高圧ガス蓄圧システム及び高圧ガス蓄圧
特開2016-017756	ガス流表示器		方法
特開2016-018645	リチウムイオン二次電池用正極材及びその製造	特開2016-113308	カーボンナノ材料製造装置、及びカーボン
方法			ナノ材料製造方法
特開2016-023162	酸素同位体標識化合物	特開2016-118275	流体冷却方法
特開2016-023853	無機質球状化粒子製造用バーナ、無機質球状化	特開2016-121905	多重反射容器
	粒子製造装置、無機質球状化粒子の製造方法	特開2016-125066	金属微粒子の製造方法
	及び無機質球状化粒子	特開2016-129880	無機質球状化粒子製造装置、及び無機質
特開2016-024156	酸素同位体濃度分析装置、及び酸素同位体濃度		球状化粒子製造方法
	分析方法	特開2016-131778	麻酔装置及び水素含有麻酔ガス中の水素
特開2016-035080	サセプタカバーおよび該サセプタカバーを		濃度制御方法
	備えた気相成長装置	特開2016-131938	酸素同位体濃縮方法
特開2016-039225	気相成長装置	特開2016-133142	水素ステーション

最近公開された出願特許

特開2016-133286 排ガス処理方法及び排ガス処理装置 特開2016-139663 気相成長装置 特開2016-142468 希釈冷凍装置 特開 2016-151433 ガス分析方法、ガス分析装置、及びヘリウム 液化システム 特開2016-153732 水分濃度検出ユニット、及び水分濃度検出方法 特開 2016-159297 ワイヤー狙いガイド及び溶接装置 特開2016-160525 微粒子製造方法、及び微粒子製造装置 特開2016-161167 気体燃料バーナ、及び気体燃焼バーナの加熱 方法 特開2016-166536 回転機械 特開2016-169880 超電導ケーブル冷却装置、及び超電導ケーブル の冷却方法 特開2016-172239 酸素同位体重成分の再生濃縮方法、酸素同位体 重成分の再生濃縮装置 特開2016-172633 粉末供給装置、及び粉末供給方法 特開2016-176095 排ガス処理方法 特開2016-179885 粉体流の分配方法 特開 2016-180455 ガス供給方法およびガス供給装置 特開2016-180504 高圧ガス容器内の水分除去方法 特開2016-183846 予備凍結装置 特開2016-186286 バイオガス発電設備 特開2016-186384 生体試料輸送容器及び輸送方法 特開2016-186394 粉体溶融バーナ 特開2016-186983 超電導電力機器用冷却装置、及び超電導電力 機器の冷却方法 特開2016-188153 ヘリウムガス精製装置およびヘリウムガス精製 方法 特開2016-188154 アンモニアの精製方法 特開2016-188331 バイオガス脱硫設備 特開2016-188737 希釈冷凍機 特開2016-188738 熱交換器 特開2016-188751 窒素及び酸素製造方法、並びに窒素及び酸素 製造装置 特開2016-189429 高温加熱装置、気相成長装置、及び気相成長 方法 特開2016-189722 生クリームの粒状凍結方法 特開2016-191533 バーナの火炎形成方法 特開2016-193404 液体ヘリウム用フィルター、及び液体 ヘリウム用フィルターユニット 特開2016-196367 水素運搬管理装置、水素運搬管理システム、 および水素運搬管理プログラム 特開2016-196496 含フッ素置換化合物 特開2016-224723 配置候補推定装置、配置候補推定方法及び コンピュータプログラム 再表 2013/145430 半自動溶接システム、変換用アダプタキット、 及び溶接用トーチ

2015年10月1日~2016年12月31日

- 再表^{2013/147096}同位体標識ピリリウム化合物 再表 2013/154185 高温超電導機器の冷却装置及びその運転方法 再表 2014/024984 医療用の水素混合ガス供給装置
- 再表2014/027473 安定同位体標識脂肪族アミノ酸及びこれを利用 したタンパク質のNMR構造解析法
- 再表 2014/065233 セレン化水素混合ガスの供給方法及び供給装置

※再表:再公表公報

計109件

大陽日酸技報 No.35, 2016

2017年2月 発行

発行 大陽日酸株式会社 技術本部 〒142-8558 東京都品川区小山 1-3-26 東洋 Bldg. Tel. 03(5788)8110 Fax. 03(6866)1024

本誌内容の一部あるいは全部を無断で転写・複写すると著作権 および出版権の侵害となることがありますのでご注意ください。

