自励振動を利用した対流伝熱型酸素富化バーナの開発

Development of Cnvective Heat Transfer-Type Oxy-Enriched Burner Using Self-Induced Oscillation

斉 藤 岳 志	* 清野尚	樹* 山本康	之* 利	萩 原 義	之*
SAITO Takeshi	SEINO Naoki	YAMAMOTO	Yasuyuki H	HAGIHARA Y	oshiyuki

幅広い加熱面積を有し、均一加熱が可能な新しい対流伝熱型酸素富化バーナ(自励振動 バーナ)を開発した。本バーナは、自励振動現象を利用することで、機械的な可動部を必 要とせずに火炎向きが周期的に変化する、画期的な機能を備える。筆者らは、自励振動バー ナのノズル構造の検討を行い、火炎開き角 60°まで安定に振動可能なノズル構造を見出 した。さらに、本バーナと従来型バーナとで対流伝熱特性を比較した結果、従来と比較し 2 倍程度の面積を均一に加熱できることを確認した。

We have developed a new convective heat transfer-type oxy-enriched burner, which can operate wide area and uniform heating. The burner can alter flame direction using self-induced oscillation phenomenon, without mechanical moving parts. With actual experiments, we found and decided a suitable nozzle framework for stable self-oscillation up until 60 degree angle of flame. Besides, we confirmed that the new burner has heating area almost double compared to the conventional burner.

1. はじめに

昨今の燃料価格の高騰に伴い,各分野において省エネ ルギー化によるコスト削減が求められている。特に鉄鋼 業界といった大量のエネルギーを使用する分野におい て,省エネルギー化へのニーズは大きい。

このニーズに応える技術として,酸素燃焼技術が挙げ られる。支燃性ガスに純酸素あるいは酸素富化空気を用 いることで,高温の燃焼火炎による伝熱効率の向上,お よび排ガス量の低減によるエネルギー利用効率を高め ることが期待でき,燃料費の削減が可能となる^{1,2)}。

当社では酸素燃焼技術を利用し、溶解炉向け多機能酸 素バーナ「SCOPE-JET[®]」,加熱炉・取鍋向け低 NOx 酸 素富化バーナ「Innova-Jet[®]」等の,電炉業界向け商材の 開発,上市を行ってきた^{3,4)}。Fig.1に,電炉鋼の製造プ ロセスへの当社商材の展開状況を示す。現在,溶解(電 炉),取鍋予熱,加熱炉向けのアプリケーションは有し ており,残るは連続鋳造のみである。このプロセスへ提 案可能な技術開発を行うことで,同市場への総合提案が 可能となる。

Fig.1 Development of our products to EAF process.

連続鋳造プロセスにおいては, Fig.2 に示すタンディッシュが用いられる。具体的には,水平方向に広い面積を 持つ一方で垂直方向に浅いといった構造的特徴を持つ, 耐火物製の注湯用容器が用いられる。そのため Fig.3 に 示すように,従来型のストレート火炎を形成する,加熱 面積の狭い対流伝熱型バーナでは底部に局所加熱を生 じるために,高熱負荷により耐火物の寿命低下が問題と なる。

そこで本報告では,自励振動現象を利用することで振 動火炎を形成し,広範囲の均一加熱を可能とするタン ディッシュ向け新規対流伝熱型バーナを開発したので, その詳細について報告する。

Fig.3 Difference of flame between conventional burner and advanced burner.

2. 試験概要

2.1 自励振動現象

Fig.4 に,自励振動を生じるノズル構造と,振動時の噴 流両端での圧力変動の様子を示す。ノズルはガス噴出口, 下流側に向かい扇状に広がるスロート,およびガス噴出 ロースロートの間の両側を連結する連結管とから構成 される。

Fig.4 Structure of self-induced oscillation burner nozzle.

ガスは噴出口より出た後,コアンダ効果(噴流のもつ 粘性によって,噴流が壁面へ付着する現象)により一方 のスロート壁に付着する(Fig.5 (A))。この際,噴流の 両端には圧力差(= $P_L - P_R$)が生じ(Fig.5 下段),対応するガス流れが連結管内に生じる。このガス流れは噴流両端の圧力差を減少させるように働き、やがて圧力差がゼロとなった際に噴流はスロート壁を離れ、他方の壁面へと付着する(Fig.5 (B))。この変化が連続的に生じることで、噴流向きが周期的に変化する^{5,6}。

この自励振動現象をバーナに応用することで,燃料ガ ス向きを周期的に変化させ,火炎向きを周期的に変化す ることが可能となる。これにより,火炎形成領域が広が り,従来型のバーナでは困難であった幅広い加熱面積を 達成できるとともに,振動に伴うガス攪拌効果による均 一加熱が期待できる。また,自励振動は機械的な駆動部 を必要としないため,シンプルなバーナ構造とすること が可能である。

2.2 試験用バーナ

タンディッシュ加熱用バーナに要求される性能とし ては,

- · 非水冷構造
- 広範囲に均一な伝熱分布
- 従来と同程度の伝熱効率

が挙げられる。自励振動現象に関する基礎的な技術報告 はあるものの,同現象を燃焼機器に応用した例は無く, 安定に自励振動を生じるノズル構造は不明瞭であった。 バーナへの応用にあたり,振動する噴流が燃焼する際に 自励振動を可能とするノズル構造の見極めが必要と考 えた。そこで, Fig.6に示す各パラメータ (L₁, L₂, T, α) による影響を調べた。

タンディッシュの予熱においては,安全性の面から非 水冷構造が求められる。そこで,非水冷においても連続 運転が可能なバーナ構造を検討した。また,従来のバー ナとの比較により,伝熱分布と伝熱効率の評価を行った。

Fig.6 Parameters of self-induced oscillation burner nozzle.

本試験においては、Fig.7の構造のバーナを用い、燃料噴 流を振動させる構造とした。また、燃料噴流を左右方向 (一次酸化剤)および上下方向(二次酸化剤)から挟み 込むよう酸化剤を噴出し、燃料と酸化剤との混合効率を 高めるとともに、火炎リフトの抑制を狙った。性能比較 用として、多重管構造の従来型バーナを用いた。各バー ナにおけるガス流量・流速設計条件を Table 1 に示す。な お、酸化剤は40 %酸素富化空気として設計している。

Fig.7 Front view of conventional burner and self-induced oscillating burner.

Table 1	Rated	gas	flow	rate	of	each	burne
---------	-------	-----	------	------	----	------	-------

	Gas Volume / Gas Velocity*				
D	[Nm ³ /h] / [-]				
Burner	F 1	1 st	2 nd		
	Fuel	Oxidant	Oxidant		
Conventional	8/1.0	42/1.0	63/1.0		
Oscillation	10 (1 0				
(used for		63/1.0	42 /0.0		
nozzle	18/ 1.0		42/ 0.8		
parameter)					
Oscillation					
(used for	8/1.0	63/1.3	42/1.0		
heat transfer)					

* Gas velocity is shown in the ratio compared with the conventional burner.

2.3 試験条件

【ノズル構造の評価】

燃料として LPG を用い, 定格条件にて酸化剤流量を固定した状態で, 燃料流量のみを変化させ, Table 2 に示す 各パラメータの影響を確認した。評価項目としては,

- 自励振動の安定性
- 振動周波数f
- ・ 燃焼状態

の3点とした。安定性の評価については、ノズル近傍の 連結管両端での圧力 P_L , P_R を測定し、その変動が Fig.5 に示すように周期的であり、火炎がスロート内で局在化 せず振動を続ける状態を安定と判断した。振動周波数 fについては、ノズル近傍の連結管両端での圧力 P_L , P_R の変動より1周期に要する時間 τ を導出し、 $f=1/\tau$ より 算出した。

Table	2	Standards	of	each	parameter
rabie	4	Standarus	U1	caun	parameter.

Parameter	Value
L1**	2D
L ₂ **	6D
T**	$(1 + 0.54L_1)D$
α	30°

** Each parameters are designed based on gas outlet width "D".

【伝熱特性の評価】

バーナの伝熱特性の評価は、水冷伝熱盤を用いた。評価に際しては、自励振動バーナのノズル各パラメータおよび酸化剤吹き込み方式の影響を見極めた。

Fig. 8 Basis for measurement of heat transfer.

Fig.8 に,対流伝熱測定の原理を示す。細分化された伝 熱盤に対し,所定量 Δ Wの冷却水を通水しておく。ここ で,伝熱盤の1区間への入熱量をHとすると,冷却水の 入口温度 T_{in} ,出口温度 T_{out} ,水の比熱 C とを用いて

$$H = \Delta W \times (T_{out} - T_{in}) \times C$$

と表せるため、ΔW、T_{in}、T_{out}を測定することで1区間 への入熱量を導出できる。また図のようにバーナを可動 することで、バーナ中心軸と測定部との距離を変化し、 火炎振動方向への伝熱量分布を測定した。

試験結果および考察

3.1 ノズル構造の評価

Fig.9 Flame of self-induced oscillation burner.

Fig.4 に示すノズル構造の自励振動バーナを用い大気 燃焼試験を実施したところ, Fig.9 のようにスロートに 沿って火炎が振動する様子が確認できた(振動火炎)。

本開発においては、バーナを非水冷構造とする必要が ある。従って、ノズルの過熱防止のために、火炎がノズ ル内で局在化しない状態が好ましい。そこで、自励振動 の安定化に影響するパラメータの見極めを実施した。

L1を D~4D の範囲で変化させ、噴流のスロート壁へ

の付着力 F_a と,連結管からの剥離力 F_d とのバランスを 変化させ、自励振動への影響を調べた。

Fig.10 Relationship between fuel flow rate and requency.

Fig.10 に、燃料流量と振動周波数との関係を示す。燃料流量の増加に伴い、振動周波数は線形的に増加する。 これは燃料噴流速度の増加により、噴流による連結管内 からの同伴ガス量が増加し、噴流両端の圧力差を解消す るのに要する時間が短くなり、これに伴って振動周波数 が増加したものと考える。

また、 $L_1 & D$ から 2D に延長することで、安定な自励 振動範囲が拡大することがわかった。 L_1 の増加に伴い T が増加し、バーナ中心軸とスロートとの距離は離れてい くが、これに伴い F_a は小さくなると考えられる。ここで 自励振動の安定化には、 $F_a > F_d$ の乖離が小さいことが好 ましいと考えられる。 $L_1=2D$ とすることで、広い流量範 囲にわたって $F_a > F_d$ とが適切な範囲でバランスしたた めに、安定範囲が拡大したと考える。

加えて、同じ燃料流速においても、L₁=2Dの方が、自 励振動数が小さい傾向がみられた。これはTの増加によ りスロート壁間距離が離れ、噴流が他方の壁面まで移動 する時間が長くなるため、これが振動周波数の低下とし て現れたと考える。以上より、L₁の調整により振動周波 数が制御できることが示唆された。

なお、 $L_1 \ge 3D$ とした場合は振動を生じなかったため、 以降は $L_1=2D$ を最適値とした。

(2) スロート入口幅:T

 L_1 の検討において,スロート壁間の距離が自励振動に 大きく影響することが示唆された。そこで T を 1.5D~ 2.3Dの範囲で変化させ,自励振動への影響を調べた。

⁽¹⁾ 燃料吹出ロースロート入口間距離:L1

Fig.11 Relationship between T and ΔQ .

Fig.11 に、T と安定流量範囲 ΔQ との関係を示す。 T=1.9D 付近を中心に ΔQ はほぼ左右対称に低下し、 T<1.6D、T>2.2D では自励振動が生じないことがわかっ た。T>2.2D において自励振動が生じない理由は、L₁の 検討において述べた通りであり、Fa<<Fdとなるため自励 振動が生じないと考える。逆に T<1.6D と T を狭めた場 合は、スロート壁と噴流の距離が狭まることで付着力が 増し、Fa>>Fd となり自励振動が生じないと考える。すな わち、Fa と Fd とを適切にバランスさせる、T の至適値が 存在することがわかった。

(3) スロート開き角度: α

α を 30~60°の範囲で変化させ, 噴流の振動角度を変 化させることでの, 燃焼状態への影響を調べた。

全てのαにおいて,同程度のターンダウン比において 安定な振動火炎が生じることを確認した。また Fig.9 に 示すように,火炎開き角がおおよそαと同程度となるこ とを確認した。すなわち,αを変えることで,任意の開 き角をもった振動火炎が用途に応じ形成可能と考える。

3.2 対流伝熱特性の評価

振動火炎の燃焼状態が対流伝熱特性に与える影響に ついて、水冷伝熱盤での測定結果を示す。

火炎開き角度

スロート開き角 α = 30°, 60°における対流伝熱特性 について比較を行った。

 α が異なる場合の伝熱分布の違いを, Fig.12 に示す。 $\alpha = 30°$ ではバーナ中心近傍に局所的な伝熱量分布がみ られ、 $\alpha = 60°$ とすることで、伝熱分布がより大きくな ることを確認した。両者の伝熱効率は Table 3 よりほぼ同 程度であるため、火炎開き角の増加により、同じ熱量を より広範囲に均一に伝熱できたと考える。

(2) 酸化剤吹き込み比: β

 $\beta =$

(一次酸化剤量) / (一次酸化剤量 + 二次酸化剤量) により β を定義し, β を 0.4~0.8 で変化させた際の対流 伝熱特性を見極めた。

Fig. 14 Effect of β on heat transfer efficiency.

Fig.13 に、 β の異なる場合での伝熱量分布を、Fig.14 に、 β の異なる場合での伝熱効率を、それぞれ示す。 β の増加により、伝熱面積を変えることなく、伝熱量を増加できた。

βを増加すると、燃料噴流の振動方向に向かう酸化剤 量の割合が多くなるため、火炎が最大振幅をとる付近で 完全燃焼を生じるが、βが小さい場合、燃料噴流を上下 から挟み込む酸化剤量の割合が多くなるため、燃料噴流 の少ないバーナ中心軸近傍では混合が良好なものの、火 炎の最大振幅付近での混合が不完全となり、不完全燃焼 となり伝熱効率が低くなると考える。

(3) 従来型バーナとの比較

 $L_1 = 2D$, T = 1.9D, $\alpha = 60^\circ$, $\beta = 0.8$ とし, 対流伝 熱特性について適正化を行った自励振動バーナについ て, 従来型のストレート火炎を形成するバーナとの比較 を行った。

Fig. 15 Effect of burner type on heat transfer distribution.

Table 4 Effect of burner type on heat transfer efficiency.

Burner	Heat Transfer		
Builler	Efficiency (%)		
Conventional	16.9		
Oscillating	17.0		

Fig.15 に,従来型バーナおよび自励振動バーナの伝熱 量分布を示す。従来型バーナはバーナ中心に局所的な伝 熱量分布を持つのに対し,自励振動バーナは広範囲に均 ーな伝熱量分布を有しており,伝熱面積は従来型と比較 しおおよそ 2 倍となっていることが確認された。また Table 4 に示すように,対流伝熱効率の優れた従来型バー ナと比較しても,自励振動バーナは同程度の伝熱効率を 有することがわかった。

4. まとめ

本試験において、以下の結果を得た。

- (1) 自励振動現象を酸素富化バーナに適用し、機械的 な機構を持つことなく火炎を振動させるバーナ を開発した。
- (2) ノズルパラメータについて、L₁を増加することで 自励振動可能な流量範囲が広がり、L₁に応じてT を適切な範囲とすることで、自励振動の安定化が 可能であることを確認した。これにより、火炎開 き角 60°まで安定に振動可能な自励振動バーナ の設計を確立した。
- (3) 火炎開き角と酸化剤吹き込み方式の適正化により、自励振動バーナの対流伝熱効率を向上できることを確認し、これらを最適化した自励振動バーナにおいて、従来型バーナと比較し2倍程度の面積を均一加熱することが可能であることを確認した。

参考文献

- 1) 諏訪俊雄,小林伸明,三宅新一.酸素燃焼技術とその展望. 工業加熱,2002,39 (3),p3-12.
- 2) 大原清司. 酸素による燃焼の技術. 工業加熱, 2002, 39 (3), p13-18.
- 3) 五十嵐弘, 阿部智信, 三宅新一. 高速酸素バーナーランス (SCOPE-JET)の開発. 日本酸素技報, 2003, 22, p7-12.
- 4) 羽路智之, 飯野公夫, 萩原義之, 山本康之. 超低 NOx 酸素 富化燃焼システム「Innova-Jet」. 大陽日酸技報, 2011, 30, p1-6.
- 5)高曽徹,河口真也,北条正弘,速水洋.フリップフロップノ ズル噴流の自励振動.航空宇宙学会・流体力学会,第32回 流体力学講演会,2000.
- 6) Cengiz Camci, Frank Herr. Forced Convection Heat Transfer Enhancement Using a Self-Oscillating Impinging Planar Jet. Journal of Heat Transfer, 2002, 124, p770-782.
- 7) N・ラジャラトナム, 野村安正. 噴流. 森北出版, 1981.
- 8) 吉田邦夫, 仲町一郎, 庄司不二雄. ガス燃焼の理論と実際. 省エネルギーセンター, 1992.

記号一覧

P_L , P_R	連結管両端圧力
D	燃料ガス吹出口幅
Lı	燃料吹出口-スロート入口間距離
L ₂	スロート長さ
Т	スロート入口幅
α	スロート開き角
β	酸化剤吹き込み比
f	振動周波数
Fa	噴流のスロート壁への付着力
F _d	噴流の連結管からの剥離力
ΔQ	自励振動燃焼の安定流量範囲
Н	伝熱盤1区間への入熱量
ΔW	伝熱盤1区間への入水量
T _{out}	伝熱盤1区間の出口水温度
T _{in}	伝熱盤1区間の入口水温度
C	水の比熱