モノシラン中ジシロキサンの高感度分析

High Sensitivity Analysis of Trace Disiloxane in Monosilane

高田克則* TAKADA Katsunori

1. はじめに

モノシラン (SiH₄) は珪素系の薄膜材料であり,半 導体用シリコンウェーハ,液晶,太陽電池用硝子での 化学気相蒸着法による薄膜形成に大量に用いられてい る。それら半導体デバイスの高性能化及びスループッ ト向上に対する要求から,より高純度なガスの供給が 求められており,ガスの高純度化要求に応えるために は高精度・高感度な分析技術が必要となる。

モノシラン中の不純物のうち,酸素を含む化合物で あるジシロキサン (Si₂H₆O) はシリコン薄膜の異常成 長の原因になると考えられている¹⁾。この不純物に対 して当社では,ガスクロマトグラフ質量分析計を用い て検出下限値0.1ppm で分析を行ってきた。しかし, モノシランの生産事業の開始にあわせて,より確実で より高感度な分析方法の確立を目指し,分析システム の改善を実施した。本報では,分析システムの改善に より分析能力の向上に成果が得られたので紹介する。

2.課題

分析システム見直しにおける技術的課題は,(1)主 成分や他の不純物に干渉されないジシロキサンの確実 な検出,(2)感度の向上の2点であった。

一般的にガスクロマトグラフ質量分析計では,主成 分の影響はカラム分離やイオンの選択的検出で解消さ れる。しかし,反応性の高い特殊ガスを分析する場合 には,配管中や装置中で主成分や不純物から測定対象 物質を生成する可能性がある。ジシロキサンは,モノ シランやジシラン (Si₂H₆)が酸素もしくは水と反応し て生成することが報告されている^{1,2)}ため,その生成 を徹底的に抑制する必要がある。

我々はこの課題に対して,インターフェース部を含 むガス流路の改良で解消を試みた。また,改良した流 路を用いて測定条件を最適化することで感度の向上を 試みた。

*開発・エンジニアリング本部 つくば研究所 分析技術センター

3. 分析法の概要

サンプルには高純度モノシランを用い,標準ガスと してヘリウムベースのジシラン混合ガス (10ppm) を 用いた。分析にはガスクロマトグラフ質量分析計を用 いた。分析法の概要を表1に示す。

表1 分析方法の概要

イオン化法	電子イオン化法
イオン化エネルギー	30 ~ 70eV
イオン源温度	200℃
測定モード	選択イオン検出法
測定 m/z	60, 62, 75, 77

4. ガス流路の改良

従来法では,特殊ガスを使用できる分離カラムとし てパックドカラムを用いて分析してきたため,イン ターフェース部には質量分析計へのガス導入量を制御 するジェットセパレータが必要であった。しかし,こ の部品はガラス製で200℃に昇温して使用するため珪 素酸化物で汚染されやすく,バックグラウンドの安定 が阻害される。そこで,ジェットセパレータを使わな い方法として,パックドカラムとキャピラリーカラム を組合せ,パックドカラムでモノシランを分離・除去 し,キャピラリーカラムで MS と接続する方法を考案 した。従来流路と新流路の比較を図1に示す。

新流路において余分なキャリアガスはマスフローコ ントローラ (MFC) から排気されるため、ジェットセ パレータが無くても分析が可能である。また、モノシ ランはカラム1でジシロキサンと分離され、プレカッ トできるためキャピラリーカラムが使用可能となる。

5. 測定条件最適化

次に,新流路を用いて測定条件の最適化を試みた。 実験の結果,種々のパラメータの中で最も重要なもの はイオン化エネルギーであった。通常,質量分析計の イオン化エネルギーは70eV に設定されるが,必要以

上のエネルギーの印加はピーク高さよりもノイズ幅の 増大につながりやすい。そこで,測定対象成分に応じ て最適なイオン化エネルギーを設定することで検出下 限値の向上を検討した。イオン化エネルギーを変化さ せて標準ガスの測定を行い,検出下限値 (D.L.)を算 出した。両者の関係を図2に示す。

図2より,イオン化エネルギーを30eVとしたとき 最も優れた結果となり,従来の分析法より10倍高感 度な検出下限値0.01ppmを達成した。

6. サンプル測定

最後に,改良した流路と最適化した分析条件を用い て高純度モノシラン中ジシロキサンの測定を行った。 測定結果を図3に示す。比較のため,他社製のモノシ ランの測定結果も併記する。

図3(a)より高純度モノシランは、ジシロキサンが 0.01ppm以下であることがわかった。また、この結 果は主成分やジシラン不純物がジシロキサン測定に干 渉せず、ジシロキサン発生が十分に抑制できているこ とを示す。図3(b)より他社製モノシランを測定した ときにはジシロキサンが0.33ppm検出され、サンプ ル中にジシロキサンが存在するときにも、正しく評価 できることが確認された。

7. まとめ

モノシラン中ジシロキサンの分析において,分析シ ステムを改善し,流路の改良と分析条件の最適化を実 施することで従来よりも安定性が高く感度が10倍優 れた分析法を確立することが出来た。

今後,この分析システムは当社モノシランの品質保 証に貢献していく。

参考文献

- Photovoltaic Sol Energy Conference, vol. 9, 1989, 607-611.
- 12年委員会編, UCS12年-半導体産業の発展とUCS12年の成果, p.1219-1241, 半導体基盤技術研究会 (2000).