TIG-MIG 複合化による高品質・高能率溶接プロセス

High Quality and High Efficiency Welding Process by TIG-MIG Hybridization

金 丸 周 平*	佐々木智章*	佐 藤 豊 幸**
KANEMARU Shuhei	SASAKI Tomoaki	SATO Toyoyuki

MIG 溶接法は TIG 溶接法と比べて高能率なプロセスであるが,スパッタや溶接金属 靭性といった品質面で改善の余地がある。溶接金属靭性の観点からは純 Ar シールドガ スが望ましいものの,純 Ar シールド条件下では表面における陰極点の不規則挙動に よって MIG アークが不安定となり適正な溶接施工が困難となる。この問題に対し,我々 は TIG と MIG の簡便な複合化によって,純 Ar シールド条件下でも MIG アークが安定 化し良好な溶接ができることを見出し,高品質・高能率な新しい溶接プロセス実現の 可能性があることを明らかにした。電流バランスおよびアーク間距離の複合条件がプ ロセス安定性に及ぼす影響を調べ,適正な条件範囲を確認した。また,突合せ・すみ 肉の実用継手への適用を行い,従来の TIG 溶接と比べて溶接時間を60~80%削減で きることを明らかにした。

MIG welding is high efficiency process compared to TIG welding, however it is needed to improve the quality about spatter and weld metal toughness for advanced GMA process. Although pure Ar shielding gas is desirable for weld metal toughness, MIG arc is unstable in pure Ar shielded condition due to the irregularly behavior of cathode spot on plate surface and suitable welding execution is difficult. We found that MIG arc becomes stable even though in pure Ar shielded condition by simple hybridization of TIG and MIG. Therefore, this process has high possibility as new type of high quality and high efficiency welding process. We investigated the influence of hybridization condition such as TIG-MIG current balance and distance between the both arcs on stabilization of the process for practical joint as butt joint and fillet weld joint and it was shown that the welding time can be reduced about $60 \sim 80\%$ compared with conventional TIG welding process.

1. はじめに

現代産業において広く利用されるガスシールドアー ク溶接法として,代表的なものの中にTIG溶接と MIG (MAG)溶接がある。TIG溶接は,純Arシール ドかつ非消耗電極式のノンスパッタ溶接により,高品 質な溶接部が得られるのが特徴であるが,溶着効率と 溶接速度が小さいため,能率向上が課題とされる。一 方,MIG溶接は,電極ワイヤ自体がジュール熱とアー ク熱によって溶着する,消耗電極式の高能率プロセス であるが,スパッタの発生や,ビードの表面酸化およ び溶接金属中の酸素量増加に伴う靭性劣化(これらは アーク安定化の為にシールドガス中に添加される酸化 性ガスに起因する)といった,品質面での課題を有す る。

ところで,鉄系材料における MIG 溶接では,純Ar シールドで溶接を行うと,アークの母材側通電点であ る陰極点が不安定となり,アークのふらつきやアーク 長の不規則変動が起きる為,ビード不整やブローホー ル等の欠陥発生を引き起こし,適正な溶接施工が困難 となる。Fig.1 (a) に,純Ar シールド MIG 溶接の不 良ビードの一例を示す。ビード周辺にみられるクリー ニング作用の形跡が陰極点のふらつきが発生したこと を示しており,ビード止端が揃わず蛇行する不良ビー ドとなっている。

これに対して、シールドガスに O2 あるいは CO2 と

^{*} 開発・エンジニアリング本部 ガスアプセンター

^{**} 開発・エンジニアリング本部 ガスアプ戦略統括プロジェクト

いった O 元素を含む酸化性ガスを添加すると, 陰極 点が安定に発生して良好な溶接が可能となる。この ため, 従来 MIG 溶接のシールドガスには, Ar と O₂, あるいは Ar と CO₂の混合ガスが使用されてきた。酸 化性ガスの添加によってアーク陰極点が安定する理 由は, 母材表面で酸化皮膜が生成することによると 言われている¹⁾。Fig.1 (b) に, シールドガスとして Ar-2% O₂を使用した従来 MIG 溶接によるビード外 観の一例を示す。陰極点ふらつきの形跡はなく, ビー ド止端が揃った良好なビードが形成されている。しか しながら, シールドガス中の O 成分によるビード表 面の酸化は避けられず, また溶接金属中への酸素固溶 量についても, 母材と比較して多量となる。

 (b) MIG (Ar-2% O₂ Shielding gas)
 Fig.1 Bead appearance of conventional MIG on each shielding gas condition

以上に述べた通り,ビード表面酸化や溶接金属の靭 性といった溶接品質の観点からは,純Arシールドで の溶接が望ましいものの,高能率な MIG 溶接への純 Arシールド適用にはアーク不安定という技術的課題 がある。このため近年の溶接業界では,純Arシール ド条件下でも,従来 MIG と同様の良好な溶接部が得 られる安定な溶接プロセス,いわゆるクリーン MIG 溶接実現への要望が高まっている²⁰。

著者らは、この純 Ar シールド条件下での MIG アー ク陰極点の不安定挙動に対し、TIG と MIG のアーク を向き合わせてアーク間距離や電流バランスの各複合 化条件を調整するのみの簡便な複合化によって、陰極 点ふらつきが解消し充分な MIG アーク安定性が得ら れ、溶込み・形状ともに良好なビードが得られること を見出した³⁾。したがって、TIG-MIG 複合化により純 Ar シールド条件下でも安定なクリーン MIG 溶接プロ セス、すなわち TIG の高品質と MIG の高能率を両立 した新しい溶接プロセスの実現が期待できる。

TIGとMIGの複合化プロセスについては、過去にいくつかの実施例がある。しかし、従来のTIG-MIG

複合化の試みにおいては,アーク同士の干渉により両 アークに反発作用が生じ,溶接が不安定化するものと 考えられていたことから,このアーク干渉の影響を排 除するために両電極の溶接電流を交互に切り替える手 法^{4,5,6)}や,アークに磁場を付加すること^{7,8)}によって 干渉を制御する手法がとられてきた。しかしながら, これらの手法では特殊な電源や磁場付加の設備を必要 とするため,装置としては大掛かりなものとなり,幅 広く実用性に優れた溶接法として使用されるには,よ り簡便な手法によるプロセスであるのが望ましい。

そこで本研究では、実用性に優れた TIG-MIG 複合 溶接法の確立を目指し、基本的な複合化条件である電 流バランス、アーク間距離の複合化条件がプロセスに 及ぼす影響を評価し、適正な条件範囲について検討し た。また、開先突合せや水平すみ肉といった実用継手 への TIG-MIG 複合溶接の適用を行い、基本条件を選 定するとともに、従来法である TIG 溶接の標準条件 との速度・パス数による能率の比較を行った。

2. 実験方法

Fig.2に実験装置の概略図を,Table1に基本溶接 条件を示す。溶接においては,先行 TIG および後行 MIG のアーク配置とし,まず TIG アークを起動し, 溶融池が形成した後,MIG アークを起動した。オシ ロスコープにより,電流・電圧波形およびその実測値 を測定し,溶接入熱と溶接安定性(主に短絡有無)を 確認した。また,溶接現象観察のため,高速カメラを 使用して溶滴移行・アーク状態を観察した。

はじめにビードオンにて, Table1の基本条件で溶 接を行い, アーク現象およびビード外観・形状といっ た実験結果について観察した。

次に, TIG と MIG の電流バランスおよび, アーク 間距離の各条件を変更し, 同様の観察によりその影響 を評価した。

各条件における後行 MIG 電圧の調整にあたっては, 一定のワイヤ送給量に対して,ワイヤ短絡が起きず溶 滴が自由移行となる下限近く,あるいは微小短絡が起 きる程度の電圧値を適正として,調整を行った。

Table 1 Basic experimental condition

Base metal / thickness (mm)	SUS304 / t6 ~13 (Basic: 12)	
MIG wire / diameter (mm)	Y304 / \$1.2	
	TIG: 150 ~ 500	
Input current (A)	(Basic: 350)	
	MIG: 250 ~ 280	
Welding speed (cm/min)	30	
Wire feed speed (m/min)	10	
Distance between	0 ~ 16	
TIG and MIG arc (mm)	(Basic: 4)	
MIG wire extension (mm)	25	
Torch angle (degree) TIG / MIG	-30 / +30	
Shielding gas	Ar, Ar + He	

3. 実験結果と考察

3.1 ビードオン基本条件における溶接挙動観察

Fig.3 (a) ~ (d) に,ステンレス鋼におけるビード 外観および高速カメラ撮影による溶滴移行観察像, MIG 溶接の電流電圧波形,断面マクロを示す。

(d) Current-Voltage wave of trailing MIGFig.3 Experimental data of TIG-MIG welding on bassic condition

(1) ビード外観・断面マクロ

止端が揃った良好なビード外観が得られた (Fig.3 (a))。ビード周辺にクリーニング作用の形跡がない ことが, 陰極点がふらつくことなく MIG アークが 安定に発生したことを示している。また純 Ar シー ルドによって,表面酸化が少なく光沢あるビード外 観が得られた。

溶込み深さは4.1mm であり充分な溶込みが得ら れた。Ar ベースのシールドガスによる MIG 溶接 特有の中央が深く溶け込んだ溶込み形状となった (Fig.3 (b))。

(2) アーク挙動・溶滴移行観察・電流電圧波形

TIG と MIG の両アークが電磁作用によって互い に反発し,離れ合う方向へと曲がって発生する様子 が観察された (Fig.3 (c))。MIG ワイヤの溶滴移行 としては,先端が細長く伸びたストリーミング移行 となり,スパッタの発生は無く,短絡のない安定し た溶接挙動が認められた。また,後行 MIG の電流 電圧波形においても短絡箇所は認められず,安定 した溶滴移行であったことを裏付けている (Fig.3 (d))。

3.2 電流バランスの影響

プロセス安定化に適した TIG-MIG 電流バランスの 条件について検討するため,電流バランスが及ぼす ビード形状およびアーク安定性への影響を評価した。 MIG 電流の入力値を270A (ワイヤ送給量10m/min) で一定とし,TIG 電流を150~500A の範囲で変更し た。ここで,MIG 電流を一定としたのは,MIG 溶接 では電流・ワイヤ送給量によって溶滴移行形態が変化 して複雑に溶接現象に作用するため,溶滴移行形態と してはスプレー移行となる条件で MIG 側の電流を固 定し,TIG 電流変化による影響を検討したことによる。 なお,TIG 電流以外の条件は Table1の基本条件とした。

Fig.4に、ビード外観および断面マクロを示す。

電流値が TIG ≧ MIG の関係となる TIG250~500A においては,基本条件と同様の安定なアーク挙動・ ビード形成が認められた。一方,TIG < MIG となる TIG150~200A においては,MIG アーク陰極側にお いて広範囲に渡るクリーニング作用がみられ,スパッ タも多量に発生した。しかしながら,ビード形状とし ては先行 TIG 無しの条件と比べると,蛇行は軽減され, 相対的には良好な結果が得られた。このことから,陰 極点形成のための TIG 電流値としては不十分な量で あっても,先行 TIG アークの存在は,後行 MIG アー クに対して,ある程度の安定化効果を与えていると考 える。

Fig.4 Influence of Leading TIG current on bead appearance and penetration shape

Fig.5に,先行 TIG 電流値に対する,溶込み深さの 変化を示す。基本的な傾向として,電流が大きくなる ほど溶込み深さは大きくなった。電流バランスが TIG ≧ MIG となる TIG 電流250A から500A の範囲にお いては,TIG 電流変化に対する溶込み深さの増加率は, TIG 電流値の増加率とほぼ一致した。一方,TIG ≧ MIG の関係が成立しない TIG200A 以下の範囲では, 溶込み深さは TIG 電流の変化に相関せずにほぼ一定 値となる傾向がみられた。

以上のことから,陰極点安定化のためには TIG ≧ MIG の電流バランスが必要となり,その条件を満た す領域では先行 TIG 電流に依存して溶込みが増加す ることがわかった。

3.3 アーク間距離の影響

アーク間距離によるアーク現象・溶接結果への影響 評価を行った。板厚10mmの SUS304において, アー ク間距離を0~16mmの間で変更し溶接を行った。 なお、板厚および距離以外の条件は Table1の基本条 件とした。ビード外観および断面マクロを Fig.6 に示 す。

ここで,純Arシールド条件にも拘らずビード表面 に酸化が認められるが,これは3.1および3.2におい てはアーク発生部分を覆うシールドボックス内で溶接 を行っているのに対し,アーク間距離の実験では距離 が大きい条件において2本のトーチがシールドボック ス内に収まらず,いずれの条件においてもシールド ボックスなしで溶接を行ったためである。ビード表面 に酸化がみられるもののアーク直下の溶融部は各トー チからのシールドガスによって覆われているため,純 Arシールド中のアーク溶接としての評価はできてい ると考えるが,本実験での結果はトーチ間およびトー チ外周からの大気の巻き込み等の要素について,シー ルドボックス内での溶接とは異なるシールド条件のも とで,アーク間距離の影響を比較した結果といえる。

距離が大きくなるほど MIG の適性電圧値が増大し た。これは、距離の増大により TIG の予熱効果が減 少したことによって、ワイヤを溶融しスプレー移行と するために必要な電圧が、より大きい値となったと考 える。

ビード形状としては,距離が大きいほどビード幅は 広くなり,近距離ではビード幅が狭い凸形状となり, 特に距離0mm および4mm の近接した条件において ビード幅は大きく変化した。一方,溶込み深さについ ては距離に依存した顕著な変化はみられなかった。

Distance (mm) [MIG voltage]	Bead appearance	Cross Section
16 [29V]		
12 [28V]		
8 [25V]		
4 [21V]		
0 [13V]		

3.4 実用継手における従来 TIG との能率比較

実用継手である下向き開先突合せ,水平すみ肉継 手への適用性を評価するとともに,従来法である TIG 溶接法との能率の比較を行った。選定した溶接条件に ついて,ステンレス鋼溶接施工基準⁹⁾における同一形 状継手に対する TIG 溶接の標準溶接条件例と比較し, 速度・パス数について比較を行い,削減可能な溶接時 間について検討した。

Fig.7に,板厚12mm SUS304の2層3パス,および板厚6mm SUS304の1パスの開先突合せ溶接,板厚13mm SUS304Nの1パスのすみ肉溶接における,ビード外観および断面マクロを示す。Table2に,TIG溶接標準条件との溶接時間の比較結果を示す。溶接時間については,溶接速度とパス数のみを考慮し,溶接長1m当りを溶接するのに必要な時間を溶接時間とした。

Fig./ IIG-MIG welding on Groove butt • fillet weld (horizontal position)

板厚12mmの突合せ溶接において,TIG標準条件の速度・パス数が,5~20cm/min・6パスであるのに対し,TIG-MIG複合溶接では25cm/min・2層3パスで良好な溶接継手を作製でき,その結果,溶接時間は12minとなり,TIGの標準条件との時間比は40%となった。表面酸化についても,純ArシールドによりTIG溶接と同等の高品質なビード外観が得られた(Fig.7 (a))。

同様に,他の板厚・継手においても溶接速度の向上 およびパス数の削減によって溶接時間が短縮される結 果が得られた。

Table 2 Comparison of welding time for TIG vs. TIG-MIG

		(a) t12 butt joint	(b) t6 butt joint	(c) t13 fille joint
Welding Speed (cm/min)	TIG	5 ~ 20	10 ~ 15	5 ~ 10
	TIG-MIG	25	30	30
Number of pass	TIG	6	2	2
	TIG-MIG	3	1	1
Welding time (min/m)	TIG	30	13.3	20
	TIG-MIG	12	3.3	3.3
Ratio of time (TIG-MIG /TIG)		0.4	0.25	0.17

以上より,下向き開先突合せおよび水平すみ肉の継 手において,溶接長1mあたりの施工時間(溶接工程 のみを考えた場合)について,TIG-MIG溶接法適用に よってTIG溶接の標準条件と比べて約60~80%,溶 接時間を削減できる可能性が高いといえる。

4.まとめ

TIG-MIG 複合溶接法の実用化を目的として,電流 バランス,アーク間距離の影響評価および,開先突合 せと水平すみ肉の実用継手への適用を行った。以下に 示す知見が得られた。

- (1) 電流バランスは, TIG 電流が MIG 電流よりも大 きい TIG ≧ MIG の条件が, MIG アーク安定化に 必要であり, TIG < MIG の条件ではアーク不安 定となる。
- (2) 電流バランス TIG ≥ MIG の条件を満たす領域で
 は,先行 TIG 電流に依存して溶込みが増加する。
- (3) アーク間距離について,距離が大きいほど MIG 適正電圧の増大およびビード幅の広がりがみられ,一方距離が小さいほどビード幅は狭くなり, ビード形状は凸となる傾向がみられた。
- (4) 板厚12mmの2層3パス,および板厚6mmの1

パス開先突合せ溶接,および板厚13mmの1パス 水平すみ肉溶接における基本溶接条件を選定し, 各実用継手において良好な溶接が可能であること を確認した。

(5) 選定した基本溶接条件を従来法である TIG 溶接の 標準条件と比較し,溶接時間を約60~80%削減 できる可能性が高いことを確認した。

参考文献

- 安藤弘平,長谷川光雄.溶接アーク現象6版.産報 (1976).94-95.
- 2) 小溝裕一. 溶接学会誌. 第78巻(No.6). 11-14(2009).

- 金丸周平,佐々木智章,佐藤豊幸.溶接学会全国大会講 演概要第87集.150-151 (2010).
- 小倉慧,二瓶正恭,芦田栄次,田口文夫,妹島五彦.溶 接学会誌.第52巻(1983)第3号.282-286.
- 5) 小倉慧, 二瓶正恭, 芦田栄次, 志田朝彦, 田口文夫. 溶 接学会論文集. 第1巻(1983)第3号. 330-335.
- 小倉慧,二瓶正恭,芦田栄次,田口文夫. 溶接学会全国 大会講演概要第34集. 48-49 (1984).
- 7) 小林秀雄, 中村吉宗. 機械技術研究所所報 Vol.37(1983) No.2. 49-59.
- 8) 小林秀雄, 中村吉宗, 中原征治. 機械技術研究所所報 Vol.38 (1984) No.3. 117-128.
- ステンレス協会,改正 SAS 801 ステンレス鋼溶接施工基準,平成12年12月1日改正,33-72.