技術報告

高誘電体材料ドライエッチングガス

Reactive Gases for Dry Etching of High-Dielectric-Constant Film Materials

北川智洋* 斧 高一** 大沢正典***
KITAGAWA Tomohiro ONO Kouichi OOSAWA Masanori

羽 坂 智*** 井 上 實***

HASAKA Satoshi INOUE Minoru

高誘電体 HfO。膜について、三塩化ホウ素 (BCl₃) を含む高密度プラズマを用いて、 高周波(RF)バイアスなしの低イオンエネルギー条件下(ノンバイアス条件下)でのエッ チング特性を調べた。実験は、ガス圧力とガス組成比を変化させて行い、Si, SiO₂に 対する高いエッチング選択性、および高い HfO₂エッチング速度を与えるプラズマ条 件とエッチングケミストリーに焦点を当てた。圧力 $P_0=10\,\mathrm{mTorr}$ の $\mathrm{BCl_3}$ プラズマに おいて、HfO₂エッチング速度は~5 nm/min 程度であり、Si、SiO₂に対する選択性 >10を得た。また、 $P_0 \le 6$ mTorr の低圧力では、 HfO_2 、Si、 SiO_2 全てのサンプル表面 に、ホウ素・塩素化合物 B,Cl,の堆積(保護膜堆積/形成)が生じ、エッチングが妨げ られた。ここで、BCl₃プラズマにO₂を混合すると、このような保護膜形成が抑制さ れ、 $P_0=5\,\mathrm{mTorr}$ の $\mathrm{BCl}_3/30\,\%\,\mathrm{O}_2$ プラズマにおいて、約10倍速い HfO_2 エッチング速度 ~50 nm/min が得られた。しかし、さらに O_2 混合割合 \geq 50% に増大すると、サンプ ル表面に、ホウ素・酸素化合物 B_vO_vの著しい堆積が生じ、エッチングが妨げられた。 ここで、 $\sim 50 \,\mathrm{nm/min}$ 程度の HfO_2 エッチング速度は、高誘電体膜の成膜装置 (CVD, ALD) の量産時における in-situ チェンバークリーニングに対して求められるスペック に耐えうる値である。これらの実験結果について、プラズマ診断(静電プローブ、発 光分光), および表面診断(走査電子顕微鏡, X線光電子分光)の結果をもとに、BCl3 を含むプラズマにおける HfO₂膜のノンバイアスエッチングの機構を探った。

Etching characteristics of high dielectric constant HfO_2 films have been studied in high-density BCl_3 containing plasmas without rf biasing. Experiments were performed as a function of gas pressure and composition, with emphasis being placed on plasma conditions and etch chemistries to achieve a high selectivity over Si and SiO_2 and to enhance the etch rates. The HfO_2 etch rate was ~ 5 nm/min at a pressure P_0 =10 mTorr in a BCl_3 plasma, giving a selectivity of >10 over Si and SiO_2 . At lower $P_0 \le 6$ mTorr in BCl_3 , the deposition of (or the formation of a passivation layer of) boron-chlorine compounds B_xCl_y was observed to occur on all sample surfaces of HfO_2 , Si, and SiO_2 to inhibit etching; the measurements of the etched depth as a function of time indicated that on HfO_2 surfaces, the deposition occurred following the etching during about a half min after some induction period. The addition of O_2 to BCl_3 was then found to suppress the deposition and to significantly enhance the HfO_2 etch rate by about an order of magnitude, giving an etch rate of \sim 50 nm/min at P_0 =50 mTorr in a $BCl_3/30$ % O_2 plasma; however, at higher O_2 addition ≥ 50 %, heavy deposition of boron-oxygen compounds B_xO_y occurred on surfaces

^{*} 京都大学大学院工学研究科航空宇宙工学専攻 現在,エヌ・ティ・ティ・コミュニケーションズ株式会社

^{**} 京都大学大学院工学研究科航空宇宙工学専攻

^{***}電子機材事業本部マーケティング統括部

to inhibit the etching. Note that the HfO_2 etch rate of several tens of nm/min meets the requirement for *in-situ* chamber cleaning of chemical vapor deposition (CVD) and atomic layer deposition (ALD) apparatuses to prepare high-k films in mass production. The etch mechanisms responsible for the phenomena observed are discussed based on plasma and surface diagnostics, including Langmuir probe measurement, optical emission spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy.

1. はじめに

半導体デバイスの高性能化(高集積化,高速化)・ 多様化と, それに伴う回路パターンの微細化に対応 して, 近年, 新しい材料やデバイス構造が検討され 実用化に向けての研究開発が盛んであり1), 高誘電 率 (High-k) 材料をゲート絶縁膜として用いる High-k ゲートスタック技術は、今後の半導体技術開発の最重 要課題の一つである1,2)。ゲート絶縁膜の薄膜化が限 界に近づいている現在の SiO_2 膜 (k=3.9) やSiON 膜 $(k \sim 7-8)$ にかわり、さらに高い比誘電率 (k>20) の ゲート絶縁膜を用いることによって、ゲート容量を確 保しつつ物理的膜厚を厚くしてゲートリーク電流を抑 制することができる。High-kゲート絶縁膜としては、 リーク電流,移動度,耐熱性,膜中・界面欠陥,不純 物拡散などの観点から、金属酸化物 HfO2, ZrO2, お よびそれらのシリケート ($HfSi_xO_v$, $ZrSi_xO_v$), さらに Al₂O₃やその複合酸化物 (Hf_{1-x}Al_xO_v, Zr_{1-x}Al_xO_v) など が候補にのぼる。一方、ゲート電極には、従来の多結 晶 Si ゲートが適用されているが、多結晶 Si の空乏化 がゲート容量低下につながるため、メタルゲートの開 発が求められる。メタルゲート電極としては、TiN, TaN, Pt, Ru/RuO₂, Ir, およびそれらの積層構造な どが候補にのぼる。

本稿では、High-kゲートスタック形成プロセスのみならず、High-k膜の成膜装置(化学気相堆積/CVD、原子層堆積/ALD)における in-situ チェンバークリーニングにも不可欠な、High-k膜材料のドライ(プラズマ)エッチングについて³)、反応ガスの研究の現状と課題について、基礎となるエッチング反応機構に関する今日の理解⁴®とともに述べる。特に、チェンバークリーニングを念頭に、低イオンエネルギー条件下(高周波/RFバイアスなしの条件下)における High-k 膜の高速エッチングに焦点を当てる°)。High-k 膜のことがであり、にれまでほとんど行われていない。

2. 高誘電体材料のエッチングガス

Table 1に 示すように、 HfO_2 、 ZrO_2 、 Al_2O_3 など High-k 膜のドライエッチングに関しては、Al 塩化物を除いてハロゲン化物の融点・沸点が高く $^{10)}$ 、ハロゲン系ガスを反応ガスとして用いる通常のプラズマエッチングでは蒸気圧が高い(揮発性が高い)反応生成物が得られない。さらに、 $Table\ 2$ に示すように、Hf-O、Zr-O 結合が強い(結合エネルギーが大きい)こともあり $^{10)}$ 、 HfO_2 、 ZrO_2 はいわゆる難エッチング材料である。エッチング反応機構の観点からは、自発

Table 1 Physical properties of potential etch product species ¹⁰⁾.

Element	Halogen compound	Melting point $(^{\circ}\!$	Boiling point $(^{\circ}\mathbb{C})$
Al	AlF_3	2250	1276
(Z=13)	AlCl ₃	192.6	_
(L=13)	$AlBr_3$	97.5	255
Si (Z=14)	SiF ₄	-90.2	-86
	$SiCl_4$	-68.85	57.65
	$SiBr_4$	5.2	154
	ZrF_4	_	912 sp
(Z=40)	$ZrCl_4$	_	331 sp
(L=40)	ZrBr_4	_	360 sp
Hf (Z=72)	HfF ₄	_	970 sp
	$HfCl_4$	_	317 sp
(L=12)	$HfBr_4$	_	323 sp

sp: sublimation point

Table 2 Bond strengths for diatomic species ¹⁰⁾.

	rubic _ boild strongths for diaconnespected .				
Bond	Bond strength (eV)	Bond	Bond strength (eV)		
B-O	8.38	Si-O	8.29		
B-F	7.85	Si-F	5.73		
B-Cl	5.30	Si-Cl	4.21		
B-Br	4.11	Si-Br	3.81		
		Si-Si	3.39		
C-O	11.15	Zr-O	8.03		
C-F	5.72	Zr-F	6,38		
C-C1	4.11	Zr-Cl	5.11		
C-Br	2.90	Zr-Br	_		
Al-O	5.30	Hf-O	8.30		
Al-F	6.88	Hf-F	6.73		
Al-Cl	5.30	Hf-Cl	5.16		
Al-Br	4.45	Hf-Br	_		

的(熱的)な化学反応やイオンアシスト反応のような反応活性種の化学的作用が支配的なエッチングは困難であり、高エネルギー入射イオンによる物理的スパッタリングに頼らざるを得ないと考えられる。ただ、Hf、Zrの塩化物・臭化物は、フッ化物と比較して多少揮発性が高く、イオンアシスト反応など化学的な反応が介在するエッチングが期待できる。すなわち、入射イオンエネルギーの物理的作用によるHf-O、Zr-O結合の切断、エッチャントの化学的作用によるHf、Zrの塩化物・臭化物の形成、物理的・化学的作用による反応生成物の脱離の過程でエッチングが進行し、さらに酸素Oを引き抜く(除去する)ケミストリーが付加されるとエッチングがより容易になると考えられる。

High-k 膜材料のドライエッチングに関して、これ まで、BCl₃/Cl₂プラズマによる Zr_{1-v}Al_vO_v膜¹¹⁾、Cl₂/ Ar プラズマによる ZrO₂膜¹²), BCl₃/Cl₂プラズマによ る HfO₂, ZrO₂ 膜 ¹³⁻¹⁵⁾, Cl₂/Ar, SF₆/Ar, CH₄/H₂/Ar プラズマによる HfO₂膜 ¹⁶⁾, CF₄, Cl₂/HBr/O₂プラズ マによる HfO₂膜¹⁷⁾, Cl₂/HBr, CF₄/CHF₃プラズマに よる HfO₂ 膜¹⁸⁾, CF₄/Ar, C₄F₈/H₂/Ar プラズマによ る HfO₂膜¹⁹⁾のエッチングが研究されている。いず れも、High-k 膜材料のSi 基板に対する高いエッチン グ選択比(High-k/Si>1)を得るためのエッチングケ ミストリーに重点を置いている。ハロゲン系ガスプ ラズマによる金属酸化物と Si のエッチングを比較す ると、通常 Si のエッチング速度の方が大きく、Highk/Si 選択比 > 1 は困難である。従って、High-k/Si 高 選択性の実現には、Siに対するエッチング反応種(エッ チャント)であるハロゲン原子ラジカルのプラズマ中 の密度を減少させるとともに、Si表面への保護膜形 成を促進させて、Si エッチング反応を抑制すること が不可欠となる。具体的には、例えば、Cl。プラズマ に BCI。を混合することにより、CI 原子密度を減少し、 Si 表面における B-Si 膜形成を促進して、Zr_{1-x}Al_xO_v、 HfO₂, ZrO₂/Siエッチング選択比~1程度を得てい る11,13-15)。また、フルオロカーボンプラズマでは、 C-rich な C₄F₈ガスの Ar 高希釈条件下で, F 原子密度 の減少と Si 表面での C.F. 膜形成 (重合膜堆積) の促 進をはかり、HfO₂/Siエッチング選択比>1を得てい る ¹⁹⁾。C₄F₈/Ar プラズマではさらに、微量の H₂添加 と入射イオンエネルギーの制御(RFバイアス電圧の 調整) により、選択比 > 10 が得られている 19)。フル オロカーボンプラズマによるこのような HfO₂/Si 高選 択性エッチングは、これまで多くの研究が行われてい る SiO₂/Si 高選択性エッチングの考え方と同じである

が、 HfO_2 など High-k 膜のエッチング機構の解明と制御はまだこれからである。

なお、シリケート ($HfSi_xO_y$, $ZrSi_xO_y$) や複合酸化物 ($Hf_{1-x}Al_xO_y$, $Zr_{1-x}Al_xO_y$) のエッチングでは、Hf や Zr と比較して Si や Al のハロゲン化物の揮発性が高く、 HfO_2 , ZrO_2 よりエッチングは多少容易であると考えられる。

3. 高誘電体材料のノンバイアス下でのプラズマエッチング

3.1 実験方法

Fig. 1に、実験に用いた電子サイクロトロン共鳴 (ECR) プラズマ装置の概要を示す²⁰⁾。ECR プラズマ はいわゆる高密度プラズマの一つである。装置は通 常の発散磁場型であり、ステンレス製のプラズマ生 成室とプロセス室から構成される。プロセス室(内 径36cm, 長さ40cm) には6inch ウエハ用の基板ス テージが設置され、その側壁は複数の計測ポートを 有する。基板ステージは、ECR共鳴領域(マクロ波 周波数2.45 GHz に対して、磁場強度 B=875 G) から 20 cm 下流 (B≈200 G) に位置し、浮動電位 (floating potential) にある。なお、基板ステージは水冷され、 また必要に応じて RF バイアス (周波数 13.56 MHz) を印加することもできる。マイクロ波は石英窓を通 してプラズマ室に入射され、反応ガスとして Cl₂, BCl₃、およびO₂をプロセス室側壁から導入した。本 実験は、マイクロ波入射パワー600W, RFバイアス パワー0W(ノンバイアス), 反応ガス流量40sccm, ガス圧力 $P_0=2\sim 20\,\mathrm{mTorr}$ (2.66~26.6 Pa, 背圧 < 10⁻⁶Torr) の条件下で行った。

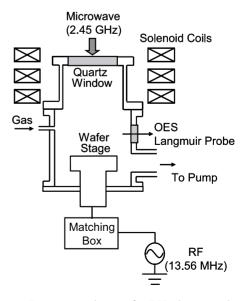


Fig. 1 Experimental setup for ECR plasma etching.

エッチングサンプルとしては、厚み~50nmの CVD-HfO₂膜 (as deposited on Si) のほか, リファレ ンスとして Si 基板および熱 SiO。基板を用いた。サン プルは2cm²の小片に分割して6inch-Siウエハ上に載 せ、該 Si ウエハを基板ステージに機械的にクランプ した。エッチング深さは段差計あるいはエリプソメト リーによって測定し、エッチング速度はエッチング深 さ/エッチング時間として求めた。ここで、典型的な エッチング時間は、5 min (in BCl₃) あるいは 0.5 min (in BCl₃/O₂) である。さらに、エッチング後の基板表 面の化学組成を X 線光電子分光 (XPS), 表面モフォ ロジーを走査電子顕微鏡 (SEM) で調べた。また,エッ チング中の基板ステージ近傍のプラズマ特性を,静 電プローブ (ラングミューアプローブ) と発光分光法 (OES) で調べた。なお、実験結果について、エッチ ング基板サンプルを載せた6inch-Siウエハの影響(Si ウエハがエッチングされて脱離する反応生成物の影 響) がないことを、HfO2基板表面の XPS スペクトル に Si のピークが観測されないことによって確かめた。

3.2 実験結果と考察・議論

Fig. 2 (a) に、BCl₃プラズマにおけるHfO₂、Si, SiO₂エッチング速度の圧力依存性を示す(エッチング 時間5min)。 HfO_2 は圧力 $P_0=8\sim12\,\mathrm{mTorr}$ において エッチングされ、 $P_0=10\,\mathrm{mTorr}$ でエッチング速度は 最大~5 nm/min であり、選択比>10が得られた(対 Si, SiO₂)。また、 $P_0 \le 6$ mtorr の低圧力では、 HfO_2 、 Si, SiO₂全てのサンプル表面に堆積(デポ, 保護膜堆 積/形成) が見られ、 $P_0 \ge 15 \, \text{mTorr}$ の高圧力ではエッ チングが生じなかった。このような傾向は BCl。/Cl。プ ラズマにおいても見られたが、pure Cl2プラズマでは ノンバイアス下でのエッチングは得られなかった。さ らに Fig. 2 (b) に、Fig 2 (a) のサンプル表面のデポ 物質をアルコールで除去し, エッチング速度を計算し 直したデータを示す。ここで、 $P_0 \le 6$ mTorr の低圧力 でのデータは Fig. 2(a) と大きく異なり、デポ層の下 の HfO。表面はエッチングされ、Si、SiO。表面は変化 がない (エッチングされていない) ことがわかる。

 BCl_3 プラズマにおけるラングミューアプローブ測定によると、プラズマ電位と浮動電位の差は、圧力 P_0 =10 mTorr において V_p - V_f ≈10 V であり、圧力の低下とともに増大した。この V_p - V_f の値は、 BCl_3 プラズマによるイオンアシストエッチングについて報告されているイオンエネルギーしきい値 E_{th} ≈ 26 eV 14 より高い。さらに、 P_0 =10 mTorr におけるプラズマ電子密度と電子温度は、それぞれ n_e ≈ 2 × 10^{10} cm $^{-3}$, T_s ≈ 1.5 eV であり、それぞれ圧力の低下とともに増大

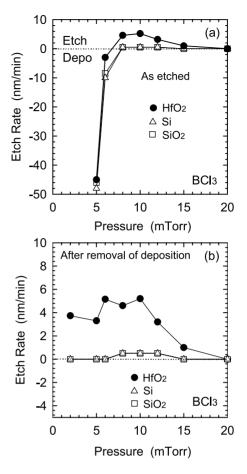


Fig. 2 (a) Etch rates of HfO_2 , Si, and SiO_2 as a function of pressure P_0 in a BCl_3 plasma, measured with an etching time of 5 min. Also shown are (b) the etch rates as a function of P_0 in BCl_3 , recalculated from the samples of (a) after removal of the deposited films on surfaces by using the solvent of alcohol.

した。このようなプラズマパラメータの変化に対応して、BCl 分子バンドスペクトル (272 nm), BCl_2 分子バンドあるいは BCl_3 分子連続スペクトル (550 nm),および Cl 原子ラインスペクトル (833 nm) の発光強度は,圧力の低下とともに顕著に増大することがわかった。

Fig. 3 (a) に、圧力 P_0 =5 mTorr の BCl₃プラズマにおける HfO₂、Si、SiO₂エッチング深さの経時変化を示す。放電開始後(エッチング開始後)、いずれのサンプルにも変化が見られない約 0.5 min のインダクション時間が経過した後、HfO₂サンプルでは約 0.5 min 間エッチングが進み、その後からデポが生じていることがわかった。それに対して、Si、SiO₂サンプル表面では、インダクション時間のすぐ後からデポが進展した。ここで、デポが生じる前の HfO₂の瞬間的なエッチング速度は、Fig. 2 (b) の時間平均されたエッチング速度より 10 倍程度速い。従って、デポを抑制できると、HfO₂エッチング速度の飛躍的な向上

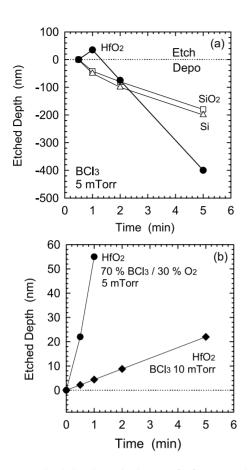


Fig. 3 (a) Etched depth or thickness of HfO_2 , Si, and SiO_2 measured as a function of time at P_0 =5 mTorr in a BCI_3 plasma. Also shown is (b) the etched depth as a function of time at P_0 =10 mTorr in BCI_3 and at P_0 =5 mTorr in a $BCI_3/30\%O_2$ plasma.

が期待できる。Fig. 3 (b) に示すように,このようなデポ抑制は,BCl₃に30%程度の O_2 を混合することによって実現され, HfO_2 エッチングは,インダクション時間なしに,エッチング開始後から約10倍の高速で進展した。ここで, P_0 =10 mTorr の BCl₃プラズマによる HfO_2 エッチングも,同様に,インダクション時間なしに,ほぼ一定の速度で進展することがわかる。従って, P_0 =5 mTorr の BCl₃プラズマで見られたインダクション時間は,サンプル表面でのデポとデポ物質の除去(エッチング)との競合に起因すると考えられる。

Fig. 4 (a) に、 BCl_3/O_2 プラズマ (P_0 =0.5 mTorr) に おける HfO_2 , Si、 SiO_2 エッチング速度の O_2 混合割合に対する依存性を示す (エッチング時間 0.5 min)。 HfO_2 は O_2 10~30% 混合においてエッチングされるが、Si、 SiO_2 にもエッチングが認められた。 O_2 30% 混合で HfO_2 エッチング速度は最大~50 nm/min であり、対 Si 選択比 > 10 程度、対 SiO_2 選択比~2 程度が得られた。しかし、より大きい O_2 混合割合 > 30% で

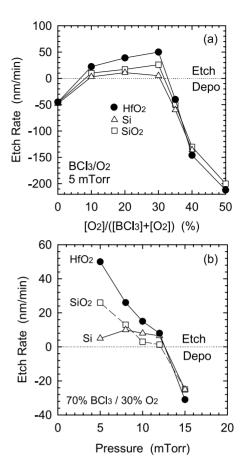


Fig. 4 (a) Etch rates of HfO₂, Si, and SiO₂ in BCl₃/O₂ plasmas, measured as a function of O₂ concentration at P_0 =5 mTorr with an etching time of 0.5 min. Also shown are (b) the etch rates measured as a function of P_0 in a BCl₃/30%O₂ plasma with the same etching time.

は、 HfO_2 , Si, SiO $_2$ 全てのサンプル表面に著しい堆積(デポ)が生じた。同様の傾向は $BCl_3/Cl_2/O_2$ プラズマにおいても見られた。ここで、 ~ 50 nm/min 程度の HfO_2 エッチング速度は、High-k 膜の成膜装置(CVD、ALD)の量産時における in-situ チェンバークリーニングに対して求められるスペックに耐えうる値である。さらに Fig. 4 (b) に、 $BCl_3/30\%O_2$ プラズマにおける HfO_2 , Si, SiO $_2$ エッチング速度の圧力依存性を示す(エッチング時間 0.5 min)。 HfO_2 エッチング速度は、圧力の増大とともに減少し, $P_0 \ge 12$ mTorr においてデポが生じるが、Si, SiO $_2$ に関しても同様であった。

Fig. 5 に, BCl_3 プラズマに 5 min,および BCl_3/O_2 プラズマに 0.5 min 暴露した HfO_2 サンプル表面の SEM 写真を示す。それぞれのエッチング条件は,(i) P_0 =5 mTorr in BCl_3 ,(ii) P_0 =10 mTorr in BCl_3 ,(iii) P_0 =5 mTorr in $BCl_3/30\%O_2$,(iv) P_0 =10 mTorr in $BCl_3/50\%O_2$,である。ここで,(i),(iv)の表面は,デポのためラフであり(表面モフォロジーが悪く),一方,(ii),(iv)表面は,エッチングされてスムーズである(表

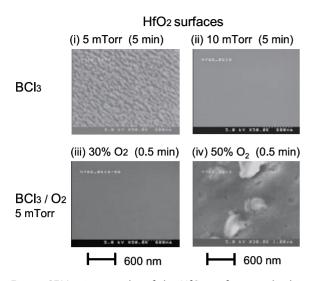


Fig. 5 SEM micrographs of the HfO₂ surfaces etched in (or exposed to) a BCl₃ plasma during 5 min at P_0 = (i) 5 mTorr and (ii) 10 mTorr. Also shown are the micrographs etched in BCl₃/O₂ plasmas during 0.5 min at P_0 =5 mTorr with (iii) 30% and (iv) 50% O₂ addition. Note that (i) and (iv) are surfaces under deposition conditions, and (ii) and (iii) are surfaces under etching conditions.

面モフォロジーが良好である)。また、デポが著しい (iv) の表面には、大きな粒子のような塊も見える。

Fig. 6 (a), 6 (b) に, BCl₃プラズマに5min, およ び BCl₃/O₂に 0.5min 暴露した HfO₂サンプル表面の XPS スペクトルを、プラズマに暴露していない HfO2 サンプルとともに示す。ここで、Fig. 6 (a) は Hf 4f, Fig. 6 (b) は Cl 2p, B 1s のスペクトルを示し、プラ ズマ条件 (エッチング条件) (i) ~ (iv) は, Fig. 5と 同じである。プラズマ暴露前, およびエッチングさ れた HfO₂表面 [(ii),(iii)] の Hf 4f スペクトルは類 似しており、束縛エネルギー16.7、17.93、および 18.13eV のピークは、Hf-O 種 (HfO₂) によるものと 考えられる²¹⁾。一方, デポ表面 [(i), (iv)] では Hf 4fの顕著なピークは認められず、デポ表面は Hf を含 まない薄膜あるいはデポ物質層で覆われていることを 示唆する。Fig. 6 (b) に示した Cl 2p, B 1s スペクト ルに関しては、プラズマ暴露前、およびエッチングさ れた HfO_2 表面 [(ii),(iii)] ではピークは見えないが, 2つのデポ表面 [(ii), (iii)] では互いに様子が異なる スペクトルが観測された。デポ条件 (i) (P_0 =5 mTorr in BCl3)の HfO2表面に観測された束縛エネルギー~ 190eVのB 1s ピークは、現時点でまだ完全に同定で きないが、B-Cl種によるものと推測される¹¹⁾。また、 デポ条件 (iv) (P_0 =5mTorr in BCl₃/50%O₂) の表面に おける束縛エネルギー192~193.6 eVのB1sピー クは、B-O種(B₂O₃)によるものと考えられる²¹⁾。こ れらの XPS スペクトル観測結果は、低圧力の BCl。

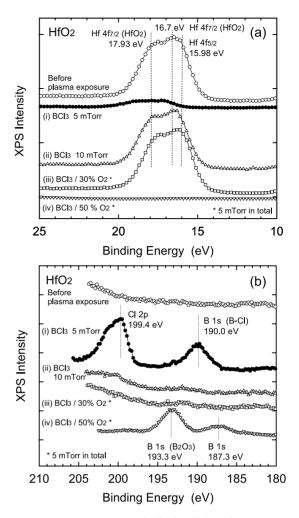


Fig. 6 XPS spectrum (a) of Hf 4f and (b) of Cl 2p and B 1s, obtained from the HfO₂ sample surfaces exposed to BCl₃ and BCl₃/O₂ plasmas under four different conditions of Fig. 4, together with HfO₂ surfaces before plasma exposure. Note that the spectrum was referenced to surface carbon at a binding energy of 284.6 eV.

プラズマでは、ホウ素・塩素化合物 (boron-chorine compounds) B_xCl_y が表面に堆積あるいは重合して保護膜が形成されエッチングが妨げられた、また、 O_2 混合が大きい BCl_3/O_2 プラズマでは、ホウ素・酸素化合物 (boron-oxygen compounds) B_xO_y が表面に著しく堆積してエッチングが妨げられたことを示唆する。

Fig. 7 (a) に、 BCl_3/O_2 プラズマ (P_0 = 0.5 mTorr) において静電プローブによって測定したプラズマ電子密度 n_e , 電子温度 T_e , およびプラズマ電位と浮動電位の差 V_p - V_f の O_2 混合割合に対する依存性を示す。電子密度 n_e は O_2 混合 10 においてほとんど変化しないが、さらに O_2 混合割合を増大すると混合割合とともに増大した。これに対し、電子温度 T_e と電位差 V_p - V_f は、 O_2 混合割合にほとんど依存せず、ほぼ一定であった。Fig. 7 (b) に、 BCl_3/O_2 プラズマ (P_0 = 0.5 mTorr) における BCl 分子バンドスペク

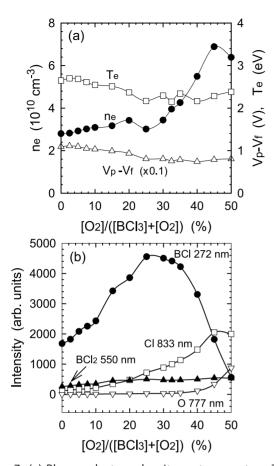


Fig. 7 (a) Plasma electron density $n_{\rm e}$, temperature $T_{\rm e}$, and the difference $V_{\rm p}$ – $V_{\rm f}$ between plasma and floating potentials in BCl₃/O₂ plasmas, measured as a function of O₂ concentration at P_0 =5 mTorr with Langmuir probes. Also shown are (b) the optical emission intensity of BCl bands (272 nm), BCl₂ bands or BCl₃ continuum (550 nm), O line (777 nm), and Cl line (833 nm) as a function of O₂ concentration in BCl₃/O₂ at P_0 =5 mTorr.

トル (272 nm), BCl₂分子バンドあるいは BCl₃分子連 続スペクトル (550 nm), 酸素原子ラインスペクトル (777 nm), および Cl 原子ラインスペクトル (833 nm) 発光強度の O。混合割合依存性を示す。ここで、HfO。 エッチング中、Hf 原子あるいは Hf を含む分子種から の発光は検出できなかったが、これは、エッチングサ ンプルの面積が小さいためと推測される。BCI発光強 度は、O₂混合割合を増大すると、25~30%O₂にお いて最大を示し、Fig. 4(a) に示した HfO。エッチン グ速度の依存性と似ている。従って、HfO₂エッチン グ表面において、強い Hf-O 結合10) を切断するため、 あるいは BOCI, (BOCI) ₃のような揮発性のホウ素・酸 素・塩素化合物の形で酸素を除去するため11), BCl種 が不可欠であることが示唆される。これは、先述した、 pure Cl。プラズマではノンバイアス下での HfO。エッ チングは得られなかったことと矛盾しない。

さらに、CI 発光強度は、O₂混合割合の増大ととも

に10倍ほど増大し、また、O発光強度は、O2混合O ~30% まではほとんど変化しないが、さらに O。混合 割合を増大すると混合割合とともに100倍ほど増大 した。このような CI や O の発光強度の多大な増大は、 Fig. 7(a) に示したプラズマ電子密度 n_a の増大より遙 かに大きい。これらの結果は、BCl₃/Cl₂プラズマによ る Al エッチングにおける O。の影響に関する研究で既 に示唆されているように^{22,23)}, BCl₃に O₂を混合する と、プラズマ中でのBCl₃あるいはBCl₄種とO₂との 反応により、揮発性が高く気体状の BOCI/BOCI₃種, あるいは揮発性が低く固体状のB₂O₃種が形成される 反応が進行して CI がリリースされ、CI 原子密度が増 大することを示唆する。実際、HfO2エッチング表面 において、揮発性のHfCl₄を形成してHfを除去する ため (例えば、 $HfO_2 + 2BCl + 4Cl \rightarrow HfCl_4 + 2$ (BOCl)), Cl種が不可欠であると考えられる¹⁴⁾。従って、BCl。 にO₂を少量混合した場合、プラズマ中で、BOCl/ (BOCI)₃のような気体種が形成される反応により、表 面反応抑制種(堆積種)BCl_xの密度が減少して(例え ば、 $2BCl_2+O \rightarrow BOCl+BCl+2Cl$)、サンプル表面では、 B_xCl_v保護膜形成が抑制され、BClやClの効果が大き くなり HfO₂エッチング速度が増大すると考えること ができる。それに対して、02を多量混合した場合は、 プラズマ中で、B₂O₃のような固体種が形成され(例え ば、 $2BCl_3+3O \rightarrow B_2O_3+6Cl$)、サンプル表面に著しい B_xCl_y 堆積が生じ、エッチング阻止に至ると考えられ る。

4. まとめ

高誘電体膜材料のドライエッチング反応ガス研究の 現状と課題について、特に、チェンバークリーニン グを念頭に、RF バイアスなしの低イオンエネルギー 条件下(ノンバイアス条件下)における高速エッチン グに焦点を当て、基礎となるエッチング反応機構に関 する今日の理解とともに述べた。具体的には、HfO2 膜について、BCl。を含む高密度 ECR プラズマを用い、 ガス圧力とガス混合比を変化させてエッチング特性 を調べ、Si、SiO₂に対する高いエッチング選択性、お よび高い HfO。エッチング速度を与えるプラズマ条件 とエッチングケミストリーについて考察した。圧力 $P_0 = 10 \,\mathrm{mTorr} \, O \,\mathrm{BCl}_3 \, \mathcal{I} \supset \mathcal{I} \supset$ チング速度は~5 nm/min 程度であり、Si、SiO₂に対 する選択性 > 10 を得た。また、 $P_0 \le 6$ mTorr の低圧力 では、HfO₂、Si、SiO₂全てのサンプル表面に、B_xCl_y 化合物の堆積/保護膜形成が生じ, エッチングが妨 げられた。エッチング深さの時間依存性の測定によ

ると、 HfO_2 表面では、あるインダクション時間の後、 $\sim 0.5 \, \text{min} \, 2$ 程度のエッチングが生じ、さらにその後に堆積が生じていることがわかった。ここで、 BCl_3 プラズマに O_2 を混合すると、このような保護膜形成が抑制され、 P_0 = $5 \, \text{mTorr} \, 0 \, BCl_3/30 \, \%O_2$ プラズマにおいて、約 $10 \, \text{倍速い} \, HfO_2$ エッチング速度 $\sim 50 \, \text{nm/min}$ が得られた。しかし、さらに O_2 混合割合 $\geq 50 \, \%$ に増大すると、全てのサンプル表面に O_2 混合物の著しい堆積が生じ、エッチングが妨げられた。ここで、 $\sim 50 \, \text{nm/min} \, 2$ 程度の O_2 化分域度は、高誘電体膜の成膜装置 (CVD、ALD) の量産時における O_2 に耐えうる値である。

これらの実験結果について、プラズマ診断(静電プ ローブ, 発光分光), および表面診断 (走査電子顕微鏡, X線光電子分光)の結果をもとに、BCl₃を含むプラズ マにおける HfO₂のノンバイアスエッチングの機構を 探り,次のようなことが示唆された。(1) HfO₂エッチ ング表面において、Hf-O 結合を切断する、および/ あるいは BOCI, (BOCI)₃のような揮発性のホウ素・酸 素・塩素化合物の形で酸素を除去するため、BCI種が 不可欠である。さらに、(2) HfO₂エッチング表面にお いて、揮発性のHfCl₄を形成してHfを除去するため、 Cl種が不可欠である。(3) 低圧力の BCl3プラズマで は、プラズマ中の表面反応抑制種(堆積種)BClxによ り, サンプル表面での B_xCl_y 保護膜形成が顕著で, エッ チングが妨げられるが、(4) 少量の O_2 を混合するこ とによって、プラズマ中で、BOCI/(BOCI)₃のような 気体種を形成する反応が促進され、サンプル表面で の B_xCl_v 保護膜形成が抑制され、BCl や Cl の効果が大 きくなり HfO₂エッチング速度が増大する。一方,(5) O_2 を多量混合した場合は、プラズマ中で、 B_2O_3 のよ うな固体種が形成され、サンプル表面に著しい B_xCl_v 堆積が生じ, エッチング阻止に至る。

参考文献

- 1) 廣瀬全孝. 応用物理. 71(9), 1091-1101(2002).
- 2) 鳥海明, 堀川剛, 生田目俊秀. Nikkei Microdevices. 12,

- 163-170 (2002).
- 3) 斧高一. 半導体テクノロジー大全 2004年版. 東京, 電子 ジャーナル, 2004, 331-335.
- 4) 斧高一. 応用物理. 68(5), 513-519(1999).
- 5) 斧高一. 半導体大事典. 管野卓雄, 川西剛監修. 東京, 工業調査会, 1999, 362-375.
- 6) 斧高一. 次世代 ULSI プロセス技術. 広瀬全孝編. 東京, リアライズ社, 2000, 436-454.
- 7) 斧高一. 表面技術. 51(8), 785-792(2000).
- 8) 斧高一. 新改訂・表面科学の基礎と応用. 日本表面科学会編. 東京, エヌ・ティー・エス社, 2004, 958-968.
- 9) Kitagawa, T.; Nakamura, K.; Osari, K.; Takahashi, K.; Ono, K.; Oosawa, M.; Hasaka, S.; Inoue, M. submitted to *Jpn. J. Appl. Phys. Lett.*
- 10) Lide, D. R., ed. CRC Handbook of Chemistry and Physics, 79th ed., Boca Raton, FL, CRC Press, 1998.
- 11) Pelhos, K.; Donnelly, V. M.; Kornbilt, A.; Green, M. L.; Van Dover, R. B.; Manchanda, L.; Morris, Y. H. M.; Bower, E. *J. Vac. Sci. Technol.* A19 (4), 1361–1366 (2001).
- 12) Sha, L.; Cho, B. O.; Chang, J. P. *J. Vac. Sci. Technol.* A20 (5), 1525–1531 (2002).
- 13) Sha, L.; Chang, J. P. J. Vac. Sci. Technol. A21 (6), 1915–1922 (2003).
- 14) Sha, L.; Puthenkovilakan, R.; Lin, Y. S.; Chang, J. P. J. Vac. Sci. Technol. B21 (6), 2420–2427 (2003).
- 15) Sha, L.; Chang, J. P. J. Vac. Sci. Technol. A22 (1), 88-95 (2004).
- 16) Norasetthekul, S.; Park, P. Y.; Baik, K. H.; Lee, K. P.; Shin, J. H.; Jeong, B. S.; Shishodia, Y.; Norton, D. P.,; Pearton, *J. Appl. Surf. Sci.* 187, 75–81 (2002).
- 17) Maeda, T.; Ito, H.; Mitsuhashi, R.; Horiuchi, A.; Kawahara, T.; Muto, A.; Sasaki, T.; Torii, K.; Kitajima, H. *Jpn. J. Appl. Phys.* **43** (4B), 1864–1868 (2004).
- 18) Chen, J.; Yoo, W. J.; Tan, Z. Y.; Wang, Y.; Chan, D. S. H. *J. Vac. Sci. Technol.* A22 (4): 1552–1558 (2004).
- 19) Takahashi, K.; Ono, K. *Proc. Int. Symp. Dry Process.* 4, 369–374 (2004).
- 20) Ono, K. Proceeding of the 8th International Symposium on Sputtering and Plasma Processes. 258–263 (2005).
- NIST X-ray Photoelectron Spectroscopy Database, web version.
- 22) McNevin, S. C. J. Vac. Sci. Technol. B8 (6), 1212–1222 (1990).
- 23) Banjo, T.; Tsuchihashi, M.; Hanazaki, M.; Tuda, M.; Ono, K. *Jpn. J. Appl. Phys.* 36 (7B), 4824–4828 (1997).