新規プラズマ CVD チャンバークリーニングガスとしての C₃F₆の性能評価

Evaluation of C₃F₆ as Alternative Gas for Plasma CVD Chamber Cleaning

伊崎隆一郎*	神 力	学*
ISAKI Ryuichiro	SHINRIKI	Manabu

プラズマ CVD チャンバークリーニングガスについて,環境負荷の大きい六フッ化エ タン (C_2F_6)の代替ガスとして,六フッ化プロペン (C_3F_6)を評価した。量産型プラズ マ CVD 装置 (AMAT P5000)を用いて実験したところ, C_3F_6 はクリーニング中に99% 以上が分解し,反応生成物として四フッ化ケイ素 (SiF₄),四フッ化メタン (CF₄),二 フッ化カルボニル (COF₂)や二酸化炭素 (CO₂)などが検出された。C₂F₆によるクリー ニングと比較すると、処理時間は同等でありながら,環境負荷の指標となる MMTCE (Million Metric Tons Carbon Equivalent)を,5%以下に低減することができた。

Hexafluoropropene (C_3F_6) was evaluated as C_2F_6 alternative gas for plasma CVD chamber cleaning using Applied Materials P5000 plasma CVD tool. As results, C_3F_6 decomposed over 99% in cleaning process. SiF₄, CF₄, COF₂ and CO₂ were detected as products in C_3F_6 cleaning. C_3F_6 cleaning time was the same as C_2F_6 cleaning. MMTCE of C_3F_6 cleaning was reduced to under 5% of C_2F_6 cleaning.

1. はじめに

半導体製造プロセスでは、シリコン酸化膜やシリコ ン窒化膜といった絶縁膜を形成する工程が多数存在す る。これら絶縁膜を形成する方法としては、プラズマ CVD 法 (PECVD) が多く用いられている。同プロセス では、チャンバー内に膜形成成分を主とする固体状堆 積物が蓄積し、成膜状態の異常やパーティクルの発生 を引き起こすため、成膜頻度に応じてチャンバー内部 をクリーニングすることが必要となる。クリーニング の方法としては、活性なフッ素原子により固体状堆積 物をガス状の四フッ化ケイ素 (SiF₄) へと化学変化さ せて排気除去するドライクリーニングが広く普及して いる。活性なフッ素原子を生成するためには、分子内 にフッ素原子を有するガスが用いられ、一般には、六 フッ化エタン (C₂F₆) や三フッ化窒素 (NF₃) をプラズ マ化する方法が用いられている¹⁾。しかなしながら, これらのガスは強力な地球温暖化ガスであり、1997 年に京都で開催された気候変動枠組条約第三回締約国 会議(COP3)以降,使用を制限する動きが活発化し ている²⁾。特に, C₂F₆については, クリーニング工程 の排出物に温暖化効果の高い四フッ化メタン (CF₄)や 未分解のC₂F₆が多く含まれるため,温暖化への寄与 * 電子機材事業本部マーケティング統括部開発部

が高く問題である3)。

削減に向けた具体策として,条件の最適化による利 用効率の改善,除害装置の導入については,既に実施 が進んでおり,温暖化物質の排出抑制に大きな効果を 上げている^{4,5)}。今後は,クリーニングプロセスにお いて用いるガスに対しても,ガス自体の有する地球温 暖化係数(GWP)が低く,また,そのガスの製造方法 についても低環境負荷であることが必要である。低環 境負荷のクリーニングガスについては,世界各所にお いて精力的な研究開発が行われている⁶⁻⁸⁾。しかしな がら,クリーニングガスとしての数多くの要求事項を 満足するガスが現状としては少なく,より一層の研究 開発が必要と言える。

我々は、フッ素原子含有化合物の物性調査から 始め、候補ガスの絞り込みを行い、実際に量産型 PECVD 装置によりクリーニング条件の最適化、なら びに性能評価までを実施した。その結果、C₂F₆の代替 ガスとして、六フッ化プロペン(C₃F₆)の可能性を見 出すことができた。ここでは、物性調査、クリーニン グの特性に加え、当該ガスによるクリーニング機構に 関して得られた新しい知見について報告する。

2. 物性調査

クリーニングガスは、クリーニング性能や環境負荷

に加え、大量に使用されることから、実用化のために は様々な条件をクリアする必要がある。具体的には、 (1) クリーニング性能が既存ガスの性能と同等以上で あること、(2) 環境負荷をトータルシステムで減少させ ること、(3) 危険性の低い物性を有すること、(4) 集中 供給などの大量供給が可能となる蒸気圧を有すること、 (5) 市場への供給量を十分確保できる、潤沢に存在す るガスであること、(6) トータルコストが既存ガスを 用いる場合に比較して同等以下であること、が要求事 項となる。我々は、これらの要求事項をガスの物性面 から整理するため、炭素原子とフッ素原子を有する物 質を中心に約20種類のガスについて調査を行った。

Fig. 1はクリーニング性能の指標を表す。クリーニ ング性能については、活性なフッ素原子をいかに効率 良く生成出来るかが重要なポイントとなる。そこで、 フッ素原子を生成する反応パスとして、プラズマ中 で電子衝撃を受けて分子内の結合が解離する反応と、 共存する酸素による酸化分解反応を想定し、各エネ ルギーをまとめた⁹⁾。結合解離エネルギーが低く、酸 化分解反応の反応生成熱(*AH*)が負に大きな値を示 す、図中の左下の領域に存在するガスが、最も高効率 にフッ素原子を生成するガスと言える。この領域には フッ素ガスが該当したが、フッ素ガスは、次世代のク リーニングガスとして候補に挙げられている。また、 結合解離エネルギーからは、八フッ化プロパン(C₃F₈) と八フッ化シクロブタン(c-C₄F₈)、酸化分解反応エネ ルギーからは、C₃F₆と c-C₄F₈の有効性が確認できた。

次に,環境負荷特性と危険性の尺度を Fig. 2にま とめた。環境負荷特性についてはガスの GWP を用 いた^{10,11)}。危険性の尺度については, National Fire Protection Association の燃焼性,反応性,毒性に関す るクラス分け数値を用い,各数値の合算を示した¹²⁾。

Fig. 1 A relationship between bond dissociation energy and enthalpy change for each fluoride gases.

Fig.2 A relationship between GWP and NFPA ratings for each fluoride gases.

GWP は、分子の赤外線吸収特性と大気中における 寿命に依存している。一方、大気中の寿命が短いとい う性質は、大気中における反応性や毒性が高くなるこ とと裏表の関係にある。従って、一般には、GWP が 低くなると危険性の尺度が増加する反比例傾向とな る。しかしながら、C₃F₆は、唯一この傾向に該当せ ず、低 GWP と低危険性を両立するガスであることが 明らかとなった。C₃F₆は、二つの炭素原子間に二重結 合を一つ有する分子構造をもつ。この二重結合は、大 気中で水酸ラジカル(OH)と速やかに反応することが 知られており¹¹⁾,結果としてC₃F₆の大気中寿命は短 く,GWPも極めて低い値となる。しかしながら、ラ ジカルが存在しない雰囲気下においては極めて安定で あり、低 GWP と低危険性を相互にバランスした物性 を示す。Fig. 1で示したクリーニング性能に関し、結 合解離エネルギーで有効性を確認した C₃F₈, c-C₄F₈に ついては、危険性の尺度は極めて低いものの、GWP は高い結果となった。

C₃F₆は,一般にはフッ素樹脂工業における中間原料 として広く普及しており,市場への安定供給,製造コ ストの観点からは,理想的なガスの一つであるといえ る。また,液化ガスであるが,蒸気圧は常温で約0.6MPa と比較的高く,ガス消費量の多いクリーニングプロセ ス用途としても十分に用いることが可能である。

以上の調査結果より、 C_3F_6 を中心とし、量産型 PECVD 装置によるクリーニング特性を既存ガスである C_2F_6 と比較して評価することとした。

3. クリーニング特性の評価

3.1 実験方法

クリーニング性能の評価は、量産型 PECVD 装置 (AMAT 社製 Precision5000)を用いた。評価の手順 は、SiO₂を成膜した後にクリーニングを行い、その際 の SiF₄を主とする排出成分トレンド,およびチャン バー内におけるフッ素原子の発光強度トレンドを計測 した。Fig. 3に実験装置の概略図を示す。

Fig. 3 Schematic flow of experimental setup.

排出ガスの分析は、ドライポンプの後段にフーリエ 変換赤外分光器(FTIR)を設置して計測した。FTIR は、 堀場製作所製 FG120, および MIDAC 製 IGA2000を 用いた。分析条件は、ガスセルの光路長が1cm、分 解能は2cm⁻¹とした。ガスセルの後段にはダイヤフラ ムポンプを配置し、ガスセルには約2slmの一定流量 のガスを導入した。排出ガスには、多種類の成分ガス が共存すると共に、その濃度のダイナミックレンジも 大幅に変化する。このような条件における定量分析に は、多成分解析法 (PLS 法) を用いる他、各測定対象、 濃度に応じた解析手法が開発されており, これをベー スにデータを採取した¹³⁻¹⁶⁾。クリーニングによって 排出されるガスについては,温暖化に寄与する物質の 総量,およびその影響を MMTCE として評価するこ とが必要である。その算出については、FTIR による 測定結果と各温暖化物質の GWP により求めた。

3.2 クリーニング方法

 C_2F_6 によるクリーニング条件をベースに,ガス種, 流量,酸素との混合比,チャンバー内圧力,電極間距 離,クリーニング時間を変化させて実験を行った。高 周波の印加電力は,750Wで一定とした。

クリーニングの方法は、はじめに電極周りを効率的 にクリーニングする高圧クリーニングを行い、次い で、チャンバー壁や排気系をクリーニングする低圧ク リーニングを行う2ステップクリーニングを中心とし た。以下に C₂F₆を用いた場合の具体的な実験手順と 条件を示す。

<実験手順>

成膜 (約820 nm) →クリーニング→シーズニング <成膜条件>

ガス:テトラエトキシシラン TEOS (700 mg/min) +O₂ (310 sccm) +He (310 sccm)

圧力:10Torr

電極間距離:5mm
Rfパワー:300W
成膜時間:60s
<クリーニング条件>
・高圧クリーニング
ガス:C₂F₆ (500 sccm) + O₂ (600 sccm)
圧力:3.5 Torr
電極間距離:8mm
Rfパワー:750W
処理時間:45s
・低圧クリーニング

ガス: C₂F₆ (500 sccm) + O₂ (600 sccm) 圧力: 1.5 Torr 電極間距離: 25 mm Rf パワー: 750 W 処理時間: 25 s <シーズニング条件>

レシピ:成膜条件と同じ

- 処理時間:10s
- 3.3 評価方法

クリーニングは、クリーニング中に排出される SiF₄ の総量、および排出濃度の時間変化により評価でき る。しかしながら、微量のクリーニング残渣が残って いる場合、1工程の評価では確実な判定はできない。 そのために、通常はウエハを多数枚処理するマラソン テストを行い、多角的な評価を実施することが必要と なる。そこで、通常のクリーニングを行った後に、再 度、標準クリーニング、すなわち、C₂F₆によるクリー ニングを行うポストクリーニングを実施し、1工程の 評価ながら残渣量を確実に評価できる方法を採用し た。ポストクリーニングの条件は、C₂F₆クリーニング の条件とし、処理時間は各ステップ20s ずつとした。 条件の最適化は、通常のクリーニング、およびポスト クリーニングにおいて排出される SiF₄の総量とトレ ンドの双方を比較して行った。Fig. 4に測定例を示す。

Fig. 4 Evaluation scheme of cleaning.

4. 実験結果と考察

- 4.1 クリーニング性能
- 4.1.1 C₂F₆クリーニング

 C_2F_6 標準条件クリーニングにおける SiF₄濃度の時 間変化を Fig. 5 に示す。

SiF₄の排出トレンドは、クリーニング初期に多くの 排出が見られた。高圧クリーニングから低圧クリーニ ングに移行する際、電極間距離と圧力調整に要する数 秒のプラズマオフ時間があるが、その間に SiF₄の排 出は一旦停止し、その後、低圧クリーニングを行うと 再び排出が開始される傾向となった。ポストクリーニ ングを行った場合にも、若干の SiF₄排出が認められ たが、これはチャンバー内の石英ガラスなどの材料に 起因するものと考えられるため、このレベルをバック グランドとした。

4.1.2 $C_{3}F_{6}$ クリーニング

 C_2F_6 標準条件クリーニングと同じ処理時間とした 条件で、 C_3F_6 クリーニングを行った。SiF₄の排出濃度 と処理時間の関係について、 C_2F_6 クリーニングとの比 較を Fig. 6に示す。

Fig. 6 A comparison of SiF₄ emission data from 3 cleaning recipes $(1:C_2F_6 \text{ cleaning}, 2:C_3F_6 \text{ not optimized cleaning}, 3:C_3F_6 \text{ optimized cleaning}).$

 $C_{3}F_{6}$ クリーニングの場合,クリーニング初期に排出 される SiF₄濃度は、 $C_{2}F_{6}$ クリーニングと比較して低 かった。SiF₄の排出トレンドは、安定していたが、ク リーニング時間終了時には発生が収束して終点に達し た。クリーニング中に排出された SiF₄の総量は、 $C_{2}F_{6}$ クリーニングの場合と同じになった。ポストクリーニ ングにおいては、条件3の場合、SiF₄の排出総量、ト レンド共、 $C_{2}F_{6}$ クリーニングの場合と良い一致を示し た。しかしながら、条件2の場合、SiF₄の発生量がバッ クグランドレベルよりも高くなり、クリーニング残渣 が認められた。

 C_3F_6 によるクリーニング条件について、 C_3F_6 と O_2 の混合比,高圧クリーニング時のチャンバー内圧力,総ガス流量の各因子に対し、ポストクリーニングにおける SiF₄排出総量を指標として条件依存性をまとめた。Fig. 7から Fig. 9に各結果を示す。

 $C_{3}F_{6} \ge O_{2}$ の混合比については、 $C_{3}F_{6}$ の濃度が約 20%のところで極小値を取った。 $C_{2}F_{6}$ クリーニング の最適条件は、 $C_{2}F_{6}$ の濃度が約50%であることから、 $C_{3}F_{6}$ クリーニングは $C_{2}F_{6}$ クリーニングより高酸素濃 度が好条件となることが分かった。

Fig.7 Concentration of C_3F_6 effect on SiF₄ emission amounts in post cleaning.

Fig. 8 Pressure effect on SiF₄ emission amounts in post cleaning. (Total flow rate:660sccm, C_3F_6 concentration: 20%)

Fig. 9 Total flow rate effect on SiF_4 emission amounts in post cleaning. (C_3F_6 concentration:20%, Pressure:6.5 Torr)

高圧クリーニング時のチャンバー内圧力について は、5~6Torr 付近で極小値となった。 C_2F_6 クリーニ ングの最適条件は4Torr 付近であり、 C_3F_6 クリーニン グは比較的高圧側に好条件があることが分かった。

総ガス流量依存性については,約600 sccm で極小 値となった。流量を多くすることにより,チャンバー 内に投入する総フッ素原子数を多くすることができ るが,クリーニング効果はかえって低下することが分 かった。

C₂F₆とC₃F₆の最適条件を比較するため,高圧クリー ニング時のチャンバー内におけるガスの滞在時間を算 出した。式(1)に計算式を示す。

 $\tau = P_r V_r T_s / P_s Q T_r$ (1) $P_r : f + v > i - h E f (Torr)$ $P_s : 標準E f (760 Torr)$ $V_r : f + v > i - h 容積 (4700 cm³)$ Q : 総ガス流量 (sccm) $T_r : f + v > i - h 温度 (333 K)$ $T_s : 標準温度 (273 K)$

計算した結果, C₃F₆クリーニングの滞在時間は, C₂F₆クリーニングに比較して約3.5倍となった。滞在時間については, クリーニングのメカニズムの項目でより深く記述する。

4.2 環境特性

クリーニングによる環境負荷については,クリーニ ング工程により排出される成分の分析により評価され る。本実験では,FTIRにより温暖化に寄与する化学 成分の定量分析を行った。C₂F₆とC₃F₆について,各 分析結果をFig. 10とFig. 11に示す。

 C_2F_6 クリーニングの場合,ガスの分解効率は約30% と低く,また,反応副生成物 CF_4 が多く生成している ことが分かった。一方, C_3F_6 クリーニングの場合,ガ スの分解効率は99%以上となり,また, CF_4 の生成 量も C_2F_6 クリーニングに比較して大幅に低い結果と

Fig. 10 Concentration of element gases in the exhaust gas with time in C_2F_6 cleaning.

Fig. 11 Concentration of element gases in the exhaust gas with time in C_3F_6 cleaning.

なった。MMTCE については,式 (2) により算出した。 MMTCE= Σ ($Q_i \times 12/44 \times \text{GWP}_{100 i}$) / 10⁹ (2) Q_i :成分 i の排出重量 (kg)

計算の結果, C_2F_6 , C_3F_6 の双方のクリーニングでは, それぞれ, 8.5×10^{-9} , 3.0×10^{-10} となり, C_3F_6 クリー ニングの MMTCE は劇的に低い結果となった。

5. クリーニングのメカニズム

 C_3F_6 によるクリーニングは、 C_2F_6 の条件に比較し て、同じ処理時間で同等の SiF₄排出量となった。また、 C_3F_6 クリーニングの MMTCE については、 C_2F_6 に比較 して 95% 以上の削減となり、環境特性も大幅に向上 することが明らかとなった。 C_3F_6 クリーニングと C_2F_6 クリーニングを比較した場合、チャンバー内における ガスの滞在時間、クリーニング中のガスの分解率、お よび CF_4 の生成トレンドの3項目について、大きな違 いが認められた。ここで、このような性能がどのよう なメカニズムにより得られているのか、議論する。

まず,ガスの分解率について考察する。ガスの分 解率は, C_2F_6 では約30%, C_3F_6 では99%以上となっ た。ガスの分解メカニズムとしては,まず,プラズマ 中の電子衝撃による結合解離反応が考えられる。結合 解離エネルギーについては, C_2F_6 の場合,C-C 結合が 4.3 eV,C-F 結合は5.5 eV であり, C_3F_6 については, C=C 結合が4.6 eV,C-C 結合は4.8 eV となっている。 従って,炭素原子間結合解離エネルギーについては C₂F₆と C₃F₆に大きな差は認められず,分解率への寄 与は低いものと考えられる。

次に化学反応の寄与を検討した。 C_3F_6 は二つの炭素 原子間に二重結合を有するが、一般に、同結合には各 種のラジカルが高速に付加反応することが知られてい る¹⁷⁾。クリーニング中、チャンバーに導入されたガ スはプラズマ化されるが、その際、フッ素原子、酸素 ラジカル、酸素原子などのラジカルが生成するため、 C_3F_6 クリーニングの気相化学反応では、これらのラジ カルと C_3F_6 分子の反応が活発に生じているものと考 えられる。これに対して、 C_2F_6 などの飽和型フルオロ カーボン分子の場合、分子内に活性な結合を持たない ため、ラジカルが存在する雰囲気においてもガスの分 解は起こらない。従って、 C_3F_6 クリーニングにおける 気相化学反応過程では、ラジカル付加反応による寄与 が大きく、その結果、ガスの分解率が飛躍的に向上し たものと推定する。

次に、CF₄の生成機構に関して考察する。CF₄の生 成機構は、CF_xラジカルとフッ素原子の再結合反応で ある。C₂F₆クリーニングの場合,SiF₄の排出量が減少 傾向になると CF₄の生成量が増加する傾向となった。 この傾向は, 被クリーニング対象である固体状シリ コン酸化物がない、純粋な気相化学反応過程において は、CF_xラジカルとフッ素原子の再結合反応が優位に 進行することを示す。一方, C₃F₆クリーニングの場合, 含酸素化合物の生成率が高く, SiF₄の排出が減少傾向 となっても、CF₄の生成量に変化は少なかった。この 結果は、プラズマ気相反応が終始安定していることを 示している。C₃F₆クリーニングにおいては,不完全酸 化物である二フッ化カルボニル (COF₂)の生成率は高 く、クリーニングの活性種となるフッ素原子の消失過 程も存在すると考えられる。本実験においては、チャ ンバー内におけるガスの滞在時間を長くした条件につ いて、より効率的なクリーニングを行えることが明ら かとなったが、これは、COF2の生成反応パスを抑制 すること、あるいは、生成した COF₂をさらに分解す る効果があるためと考えられる。従って、C₃F₆クリー ニングは、ガスの滞在時間を長くすること、さらには、 プラズマ放電パワーを増加させることにより、より効 果的なクリーニングが行えるものと考える。

6. まとめ

PECVD チャンバークリーニングにおける C_2F_6 ク リーニングガスの代替ガスとして、各種フッ素系ガス の物性調査を行った結果、 C_3F_6 の有効性を見出すこと ができた。さらに,量産型 PECVD 装置により, C_3F_6 によるクリーニング条件の最適化,さらには, C_2F_6 と クリーニングの性能比較を行った結果,クリーニング 性能は同等となり,MMTCE は95%以上低減できる ことを明らかにした。

参考文献

- Mocella, M. T. *Mat. Res. Soc. Symp. Proc.* 447 (Environmental, Safety, and Health Issues in IC Production), 29 (1997).
- 2) Kyoto Protocol to the United Nations Framework Convention on Climate Change (Dec. 1997).
- Hines, C. M.; Pinto, J. N.; Izor, R. C.; Tamayo, T. A.; Miller, W. J. IEEE/SEMI Adv. Semicond. Manuf. Conf. Workshop 1998, 203–207 (1998).
- 4) Johnson, A.; Entley, W.; Vrtis, R.; Langan, J.; Maroulis, P.; Chen, C. M.; Chen, C. T.; Chang, Y. C.; Yam, O. H. *Proc. Electrochem. Soc.* 2000–7 (Environmental Issues in the Electronics and Semiconductor Industries), 21 (2000).
- 5)新田昭彦,杉森由章,真空.46(9),678-681(2003).
- Pruette, L.; Karecki, S.; Reif, R.; Tousignant, L.; Reagan, W.; Kesari, S.; Zazzera, L. *J Electrochem. Soc.* 147 (3),1149 (2000).
- Allgood, C. C.; Hsu, S.; Mocella, M. Proc. Electrochem. Soc. 2001–6 (Environmental Issues with Materials and Processes for the Electronics and Semiconductor Industries), 9–14 (2001).
- 8) Mitsui, Y.; Ohira, Y.; Yonemura, T.; Takaichi, T.; Sekiya,
 A.; Beppu, T. J. Electrochem. Soc. 151 (5) ,G297–G301 (2004).
- Chase, M. W. Jr. NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9. (1998).
- 10) Ehhalt, D. ; Prather, M. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2001 : The Scientific Basis. Atmospheric Chemistry and Greenhouse Gases, 2001.
- 11) Acerboni, G. ; Beukes, J. A. ; Jensen, N. R. ; Hjorth, J. ;
 Myhre, G. ; Nielsen, C. J. ; Sundet, J. K. *Atmos. Environ.* 35, 4113–4123 (2001).
- 12) NFPA-MSDS. National Fire Protection Association, America
- International SEMATECH. Guideline for Environmental Characterization of Semiconductor Equipment. 2001, Technology Transfer #01104197A-XFR. 43p.
- 14) 電子情報技術産業協会. PFC ガス測定に関するガイドラ イン, 2002.
- 15)南百瀬勇,杉浦利和. Equipment Environmental Characterization Guideline (通称インテルプロトコル)を補 完する FT-IR を用いた PFC の簡易計測方法 Rev.0.1. セ イコーエプソン, 2000.
- 16) 吉田秀俊,新田昭彦, 增崎宏. 日本酸素技報.(22), 27-29 (2003).
- 17) Grant, E. R. ; Root, J. W. Chem. Phys. Lett. 27 (4), 484-489 (1974).