技術紹介

充填蒸留内における流れのシミュレーション技術

Simulation of Packed Distillation Columns under Inhomogeneous Liquid Flow Distribution

石崎一俊*木原均* ISHIZAKI Kazutoshi KIHARA Hitoshi 江越信明* EGOSHI Nobuaki

1. はじめに

近年,深冷空気分離装置(以下,ASU)の大容量 化に伴い主構成機器である蒸留塔(充填塔)も大塔 径化している。ASUの充填塔で使用される規則充填 物は一般的な化学工業向けのものに比べ比表面積が 非常に大きく,水平方向の液の混合が促進されにく い。そのため特に大塔径充填塔では液偏流が蒸留性 能の大幅な低下につながることがある。したがって, 設計・製作にあたっては液分配器の性能や連続充填 高さなど液偏流に影響する因子に留意が必要である。

そこで当社は充填塔内を流下する液の流れを考慮 した蒸留シミュレータを開発し,充填塔設計の高度 化を図っている。

2. 充填塔シミュレータ

2.1 充填物の構造とセルモデル

充填塔を構成する充填物エレメントは、表面を液 が斜め下方に流れるよう折り曲げられたアルミ製薄 板(コルゲーション・シート)を互いに反転しなが ら積層し円筒状に整形したもので、液の分配・混合 を促進するよう,エレメントを一段ずつ90度回転さ せながら高さ方向に積層されている。セルモデルは この充填物エレメントをセルの集合体(セルクラス タ)とみなすもので、各セルから流下する液は、そ れぞれ真下およびコルゲーション・シート長手方向 下方に位置するセルに分配・混合される(図1)。こ のモデルは充填塔内の液の流れを評価する方法とし て古くから用いられているが^{1),2)},当社は気液負荷 と圧力損失の関係から,液の分配状態に応じてガス 流れを変化させるなどの改良を行い精度を高めてい る。また各セルには蒸留計算モデルが組み込まれて おり、気液の流量に応じて組成変化が得られるよう になっている。

2.2 スプリッティング・ファクタ

各セルから下方の隣接セルに分配される液の割合

図1 セルモデル概念図

はスプリッティング・ファクタ(SF)で規定される。 この値は塔内におけるセルの位置(塔中心部か塔壁 付近か)や,充填物の状態(大塔径におけるエレメ ントの分割部隙間に位置するか否かなど)により異 なり,大きいほど蒸留塔内を流下する液の分配・混 合が促進され蒸留性能は向上する。 当社ではこれまで塔径 ϕ 450 mm, 高さ約 1500 mm の小型充填塔,および塔径 ϕ 1900 mm, 高さ約 5000 mm の大型充填塔³⁾を用いて様々な条件における液 分配試験を行っており,これらのデータから各セル の SF を決定した。

2.3 計算方法

計算は英 PSE 社の gPROMS[®]を使用した。充填高 さや塔径に相当するセル分割数は任意に設定でき, 初期液分配条件に関わる運転パラメータは,液分配 器の水平度や散布孔の個体差(液流量のばらつき) などを考慮して設定することが可能である。

2.4 モデルの妥当性

モデルの妥当性を検証するため, 塔径 300 mm の 小型充填塔による N2-O2 系全還流蒸留実験を行い, 意図的に一部の散布孔を閉塞させて初期偏流を起こ した場合の蒸留性能について実測値と計算値を比較 した(表1)。塔頂酸素濃度はほぼ一致しており,本 シミュレータが実際の蒸留塔の性能を再現できるこ とがわかった。

3. 実装置のシミュレーション

本シミュレータはセル分割数およびセル数に応じた SF を指定することにより,任意の大きさの充填 塔を再現することができる。これにより液分配器の 性能(散布密度,取り付け水平度など)や,連続充 填高さなどの設計緒元によってどの程度蒸留性能が 変化するのか評価できる。

ー例として,表2に示した実際のASU規模の粗ア ルゴン塔(塔頂に向かって酸素を除去しアルゴンを 濃縮する蒸留塔)について,液分配器を正常に設置 した場合と傾斜させた場合について,下部ベッドの 液組成分布を比較した(図2)。粗アルゴン塔はプロ セス上,最も液偏流の影響を受けやすい。図2から わかるように,液分配器傾斜があった場合,塔内に 大きな液組成の偏りが生じ,蒸留性能が大幅に低下 することがわかった。

4. おわりに

ASU に充填塔が採用されてから四半世紀以上経 ち,近年では装置の大型化に加え充填物の高性能化 も進んでいる。当社はこれまで取り組んできた充填 塔内の液流れに関する一連の実験および本シミュ レータから得られる知見を基に,今後も充填塔設計 のさらなる高度化を図っていく。

表1 実験/シミュレー	ショ	ン条件	と結果の比較
-------------	----	-----	--------

系	N2-O2系(全還流)		
運転圧力	660 kPa		
塔内径	φ 300 mm		
充填高さ	1456 mm		
液分配器の 散布孔閉塞率	65 %		
セルのサイズ	W47 \times D47 \times H52 mm		
塔底 O2 濃度	87%		
塔頂 O2 濃度	実測値 28%/計算値 29%		

表 2 粗アルゴン塔のシミュレーション条件

系	Ar-O ₂		
塔内径	φ 2600 mm		
充填高さ	5200 mm×2 ベッド		
セルのサイズ	W407×D407×H208 mm		
塔底 O2 濃度	90%		

(左:均一分配,右:液分配器傾斜)

参考文献

- Around Higler et al., Nonequilibrium Cell Model for Packed Distillation Columns-The Influence of Maldistribution. Ind. Eng Chem. Res. 1999, 38, 3988-3999.
- 2) Florian Hanusch et al., Development and Application of the Tum-WelChem Cell Model for Prediction of Liquid Distribution in Random Packed Columns. Chemical Engineering Transactions, 2018, Vol.69, p739-744.
- 3) 石崎一俊, 木原均, 江越信明. 充填蒸留塔内における液 流量分布測定技術. 大陽日酸技報, 2017, No.36, p21-22