技術紹介

充填蒸留塔内における液流量分布測定技術

Experiments and Techniques for Measuring Liquid Distribution Profiles in Packed Distillation Columns

石 﨑 一 俊*	木 原 均*	江 越 信 明**
ISHIZAKI Kazutoshi	KIHARA Hitoshi	EGOSHI Nobuaki

1. はじめに

近年,深冷空気分離装置(以下,ASU)の大容量 化に伴い主構成機器である蒸留塔(充填塔)も大塔 径化している。ASUの充填塔で使用される規則充填 物は一般的な化学工業向けのものに比べ比表面積が 非常に大きく,水平方向の液の混合が促進されにく い。そのため特に大塔径充填塔では液偏流が蒸留性 能の大幅な低下につながることがある。したがって, 設計・製作にあたっては液分配器の液分配性能や充 填物の構造,充填層の均一性など液偏流防止に留意 する必要がある。

この観点から当社は大型充填塔液分配試験装置 (図1)をつくば研究所構内に保有しており,充填 塔設計の高度化に利用している。

2. 大型充填塔液分配試験装置

2.1 装置の仕様

本装置は充填塔の液分配器,充填物,充填高さな どの設計条件や,気液負荷などの運転条件が塔内の 液分配に与える影響を実験的に検証するための装置 である。図2に系統図,表1に主な仕様を示す。主 に充填塔本体 (PC),液分配測定部 (LD),気液を循 環させるブロワ (GB)およびフロンポンプ (FP)か ら構成され,常温・常圧下において任意の気液負荷 で充填塔の運転状態を再現することができる。また, 充填塔本体および液分配器 (DS)は交換可能であり, あらゆる設計条件について検証可能である。

2.2 使用流体

本装置はガス側に常温の窒素を,液相には代表的 な代替フロンの一つである旭硝子社製 AK-225G(化 学式 HCFC-225cb, 1,3-ジクロロ-1,1,2,2,3-ペンタフル オロプロパン)を使用している。AK-225Gは安全上 の取り扱いが容易な上,表面張力が液体空気に近く

* 開発本部 つくば研究所 分離技術部

図1 大型充填塔液分配試験装置外観

WP:冷却水ポンプ GC:ガスクーラ CT:冷却塔
VR:フロン回収装置 FT:フロンタンク
図 2 実験系統図

表1 装置の仕様

塔内径		1900 mm	使用液体	AK-225G
充填高さ		5000 mm (変更可)	密度	1550 kg/m ³
標準 ^{ガス} 負荷 液	15200 Nm ³ /h	粘度	0.59 mPa•s	
	液	33 m ³ ∕h	表面張力	16 mN/m

^{**} エンジニアリング本部 PEC ASUエンジニアリング部

充填物表面を膜状に流れるため,実際の ASU 内部の 液体空気の流れを良好に再現できる。

2.3 塔底部における液流量分布測定方法

充填塔本体底部には測定エリア分割格子,気液分 離コーンおよび液流量測定ボトルからなる液分配測 定部が設けられている(図3)。塔内を流下した液は 測定エリア分割格子(塔壁近くを除き一辺255 mm の正方形)により塔壁付近を含む40ヵ所の流れに分 割され,気液分離コーンにより対向するガス流れと 分離しながらそれぞれ液流量測定ボトルに流入する。 これらのボトル底部には流出係数が予め検量された 孔があるため,ボトル内の液深から液流量を求める ことができる。図4に測定結果の一例として,塔底 液流量分布を表したコンター図を示す。この例では, 塔中央部付近の流量が塔壁近くの流量に比べ10% 程度大きいことが分かる。

2.4 データ整理方法

各実験条件における液偏流の大きさは,40ヵ所の エリアそれぞれの塔底部液流量の標準偏差により評 価した。なお、塔頂部においては液分配器の設計条 件により0.03以下であることが分かっている。これ により実験データから塔内で液偏流がどれだけ大き くなったかを評価することができる。

充填塔の液偏流

本装置による解析結果の一例として,充填方法が それぞれ異なる同構造の規則充填物 A, B, C につい て,気液負荷を変えて測定した結果を図5に示す。 この図から明らかなように,ガス負荷が設計許容値 (ローディング点)を超えるあたりから液偏流が急 激に大きくなることが分かる。充填塔においては ローディング点を超えると液偏流が増大するために 蒸留性能が低下することが広く知られているが,本 実験からも矛盾しない結果が得られた。

また,同図から低ガス負荷においても条件 A は B, C に比べ液偏流が大きいことが分かる。これは充填 方法が異なることによるものであり,充填方法 A に おいては充填層の均一性が低かったことが原因と考 えられる。前述の通り,充填塔の液偏流は水平方向 の液組成に大きな偏りを生じさせ,蒸留性能の大幅 な低下につながることがある。本結果から,同構造 の充填物でも充填層の均一性を保つ充填方法が重要 であることが分かった。

測定エリア分割格子(左上)とその 裏側の気液分離コーンと液流量測 定ボトル(右上,左)。充填塔本体 はこの上に設置される。

液流量測定ボトル

図3 液分配測定部

図4 塔底部における液流量分布測定データ

4. むすび

充填塔の液偏流の原因は,上述の他に充填高さ, 液分配器の液散布密度や設置水平度など様々である。 当社では本装置で得られた知見を基に,液偏流と蒸 留を組み合わせたシミュレーションを行っており, 今後も充填塔設計のさらなる高度化を図っていく。