カーボンナノチューブ連続合成装置のシミュレーション

Numerical Simulation of Carbon Nanotubes Continuous Synthesizer

北村祐一郎*	今 健 一**	浦 川 洋 一**	長 坂 岳 志***
KITAMURA Yuichiro	KON Kenichi	URAKAWA Yoichi	NAGASAKA Takeshi
矢 嶋 尊***	坂 井 徹****	中山喜萬****	
YAJIMA Takeru	SAKAI Toru	NAKAYAMA Yoshikazu	

1.背景

カーボンナノチューブ (CNT) は炭素原子の六員環 ネットワークが円筒構造を構成する,最も細いチュー ブである。現在は CNT の用途開発が進められ大きな 市場成長が見込まれており,当社ではシリコンウェハ など基板上に CNT が林立成長 (垂直配向)した,「高 配向 CNT」の大量合成技術の確立を目指して研究開発 を行ってきた。

当社では大阪大学と共同で,熱 CVD によりシリコ ン基板上に連続的に大量の配向 CNT を合成可能な装 置の開発を目指しており,開発の一環として装置内の 熱とガス流れ,化学種濃度の把握を目的としたシミュ レーションを実施した。

2. 解析対象と格子

解析対象となる連続 CVD 実験装置の概略を図1に, 本装置で合成された CNT の例を図2に示す。装置本 体は石英ガラス製の円筒構造を水平とし,装置中央の 外周面より赤外線ヒータで加熱される。CNT を林立 成長させる基板は図中の右から左へ移動するステンレ ス製ベルトに載って移動するが,本解析では定常解析 であり基板の存在は無視した。雰囲気ガスであるへリ ウムと原料ガスであるアセチレンは,装置上部に設け られた管状ノズルより下向きに吹き込まれ,装置左側 に設けられた排気ダクトより排出される。

本解析では装置の対称性に着目し、装置本体の石英 ガラス円筒中心軸を含む鉛直面を対称面として、装 置の半分を解析領域とした。解析領域には気相の他, 装置内の固相構成要素も含まれている。解析格子は Pointwise 社の GRIDGEN Ver.15.10で作成し、すべ

* 開発・エンジニアリング本部ガスエンジニアリング統括部シミュレーションセンター ** 開発・エンジニアリング本部ガスエンジニアリング統括部 *** 開発・エンジニアリング本部山梨研究所材料研究室 **** 開発・エンジニアリング本部ガスアプ戦略統括プロジェクト ****** 大阪大学大学院工学研究科機械工学専攻

図2 本装置で合成した CNT

て六面体で構成されている。格子数は5722976セル, 17677716フェイス,6204552ノードである。図3 に解析格子の一部を示す。

3. 解析方法と条件

本シミュレーションでは装置内の流動および伝熱と 物質拡散といった現象を対象とし、伝熱機構として熱 伝導と対流伝熱に加え、輻射伝熱を考慮して定常解析

図3 解析格子

を行った。解くべき輸送式は連続の式と運動量保存則 (座標軸別に3成分),エネルギー輸送式とアセチレン 質量分率の輸送式,さらに輻射輸送式である。流れ場 は連続流かつ層流として,アセチレンを起源とする化 学反応については考慮しない。

輻射輸送式を除く輸送式はすべて有限体積法(Finite Volume Method; FVM)で離散化し,輸送式の対流項 には一次風上法による離散化を適用した。流れ場の解 析アルゴリズムには SIMPLE 法を採用し,圧力場と 速度場のカップリングを行った。輻射輸送の計算には DO 法 (Discrete Ordinate Method)を用い,個々の輸 送式と連成の上で解析を行った。

気相の輸送物性について,密度は平均分子量より理 想気体の状態方程式で求め,粘性係数と熱伝導率は Lennard-Jones ポテンシャルと分子量より理想気体と して計算した¹⁾。定圧比熱の算出には既知の温度多項 式を,拡散係数には実験式²⁾より求めた温度多項式を 適用した。輻射伝熱については気体と石英ガラスを透 明体とし,主に赤外線ヒータ加熱面と金属部品表面間 の輻射エネルギー輸送を対象とした。

解析条件として圧力場は20Torr,アセチレンと ヘリウムの流量はそれぞれ90mL/min (normal)と 210mL/min (normal),流入温度は25℃である。赤 外線ヒータ温度は800℃で非加熱区間は断熱条件とし た。

解析には FLUENT Ver.6.3.26を用い,解析結果の 可視化には FIELDVIEW Ver.12.1を使用した。

4. 解析結果

Acelylene (%)

図4に装置内の速度ベクトルとアセチレン濃度等値

図4 装置内の流動とアセチレン濃度

面,ステンレス製ベルト表面上のアセチレン濃度分布 を示す。速度ベクトルについてはアセチレン・ノズル からの吹き出しによる影響が支配的であり、ノズルか ら出たアセチレンを主体とするガスが、ステンレス製 ベルト表面に当たって方向を大きく曲げられる様子が 分かる。また、アセチレンとヘリウムとの混合は、ノ ズルから出た直後より進行している。

図5に対称面とステンレス製ベルト表面におけるア セチレン濃度分布を示す。ベルト進行方向だけでな く,垂直方向にも濃度分布が存在した。

図6にウェハ表面が通過する位置における,アセチ レン濃度分布を示す。当装置の設計方針として,CNT の成長に伴いアセチレン濃度を変化させる点にあり, 本結果より方針に従った濃度変化が得られた。

図5 対称面とベルト上のアセチレン濃度分布

参考文献

- Reid, R. C.; Prausnitz, J. M.; Poling, B. E. "The Properties of Gas and Liquid". 4th ed., McGraw-Hill Book Company, 1986, p.741.
- 2) 日本機械学会編. 伝熱工学資料. 改訂第4版, 1986, p356.