大口径基板対応量産型 MOCVD 装置 UR25K の開発

Development of 4 inch x 11 (or 6 inch x 6) Multi-Wafer MOCVD System "UR25K"

池 永 和 正*	山本 淳***	山口 晃**	矢 野 良 樹*
IKENAGA Kazutada	YAMAMOTO Jun	YAMAGUCHI Akira	YANO Yoshiki
福田靖*	田 渕 俊 也*	伴 雄 三 郎***	内 山 康 右***
FUKUDA Yasushi	TABUCHI Toshiya	BAN Yuzaburo	UCHIYAMA Kousuke

窒化物半導体発光ダイオード (LED) の需要拡大及びチップコスト低減といった顧客ニーズに対応するため、4インチ基板11枚 (6インチ基板6枚) 処理対応の量産型 MOCVD 装置 UR25K を開発した。生産性及び操作性の向上を実現するため、サセプタ 及びサセプタ対向板の搬送用ロボットを搭載した。初期評価として SR4000 (2インチ ×3枚または4インチ×1枚) 及び SR23K (2インチ×10枚または3インチ×8枚) の 成長条件をベースに GaN・AlGaN・InGaN、及び LED 構造を作製して、膜厚・組成等 の特性、及びその均一性を評価した。成長速度10 μ m/h の高速成長で作製した GaN 膜 において、X 線ロッキングカーブ半値幅 (XRC-FWHM) は対称方向 (0002) / 非対称 方向 (10-12) でそれぞれ < 200 arcsec / < 300 arcsec と良好な結晶性が得られ、また、 カーボン濃度の増加はなかった。4インチ基板面内の AlGaN (平均 Al 組成10.4%) は、 約1 μ m/h の成長速度で面内の Al 組成分布は < Δ 2% が得られた。InGaN は光励起発光 (PL) 特性及び LED 構造での電流注入発光 (EL) 特性からそれぞれ評価し SR4000 と遜 色ないレベルであった。

We have developed a mass-production MOCVD system (UR25K) with a capacity of 4 inches by 11 (or 6 inches by 6) to meet the increasing demand of LED market on high performance and low-cost production. In UR25K, the susceptor, on which 4 inch sapphire substrates by 11 were set, and the ceiling plate were automatically transferred between the reactor and the pass-box. For the preliminary test of the reactor, we have grown GaN, AlGaN and InGaN on 4 inch sapphire substrates at atmospheric pressure by scaling the growth conditions of the smaller reactors such as SR4000 (2 inch \times 3 or 4 inch \times 1) and SR23K (2 inch \times 10 or 3 inch \times 8). FWHM (full width half maximum) of XRC (X-ray rocking curve) of nondoped GaN for (0002) and (10-12) were less than 200 arcsec and 300 arcsec respectively, even though the growth rate of nondoped GaN was more than 10 μ m/h. The distribution of Al composition in the Al_{0.1}Ga_{0.9}N in a wafer for a growth rate of 1 μ m/h was under Δ 2 %. These results showed that the gas phase reaction between NH₃ and metal-organic materials was effectively suppressed. Both PL and EL characteristic on InGaN MQW or LED structure were estimated at the same level as SR4000.

1. はじめに

1990年代前半窒化ガリウム (GaN) を用いた高輝度 青色発光ダイオード (LED) が開発されて以降¹⁾, こ れらのデバイスの市場は, 信号機・大型フルカラー * 電子機材事業本部事業戦略推進部先端技術開発部 *** 電子機材事業本部化合物事業部装置技術部 *****大陽日酸イー・エム・シー株式会社 ディスプレイ等の屋外表示装置,携帯電話,自動車関 連(メータランプ等)が牽引した。このような中,現 在注目されている市場は白色 LED のノート PC 用・ 液晶薄型 TV 用のバックライトへの搭載である。長期 的展望として2015年にはノート PC でほぼ100%, 液晶 TV で30% ほどのバックライトが冷陰極放電管 (CCFL)から LED へ代替されること,及び世界的に LED 照明の設置に注力していることから,白色 LED の数量ベースの市場は2010年以降年率20%前後の継続的増加が予想されている²⁾。

以上のように窒化物系 LED の大量生産時代を向か えつつある中,デバイスの製造コスト低減の要請か ら,MOCVD 装置メーカーに対して処理基板の大口径 化・多数枚化の要求が益々強くなってきている。

現在, 当社では GaN 用 MOCVD 装置として SR2000 (2インチ1枚相当径), SR4000(4インチ1枚相当径), SR6000(6インチ1枚相当径), SR23K(2インチ10 枚または3インチ8枚)を商品化している。上記白色 LED 市場や Si 基板上の電界効果トランジスタ(FET) への応用を考えたとき,従来機ではスループットの面 で不十分であり大口径基板(4インチ/6インチ)の 多数枚処理が可能な MOCVD 装置の商品化が必須で ある。

今回 UR25K のリアクタの基本仕様及び成長条件の 決定に際して,事前に SR4000, SR6000を用いて4 インチ及び6インチ基板1枚でのエピ成長実験を行っ た。Fig.1は6インチサファイア上の電流注入発光 (EL) 測定の一例である。

ここでは、大口径多数枚対応の MOCVD 装置 UR25K のハードウエアの概要及び LED を構成する各膜種の 成長実験の結果について報告する。

Fig. 1 Current-injected photoemission of LED structure grown on 6 inch sapphire by SR6000.

2. UR25K の装置概要

本章では, 主に UR25K のリアクタ及び搬送システ ムについて紹介する。

Fig. 2は UR25K のリアクタ内部の写真である。リ アクタの基本仕様は SR23K³⁾と同様,原料ガスは3層 流ノズルからの中央噴出し,サセプタ(基板支持台) は自公転フェースアップタイプ,同軸3ゾーン加熱方 式となっている。サセプタは4インチ基板11枚もし くは6インチ基板6枚載置可能である。また,基板の 自転用歯車とそのベアリングの配置を工夫して基板同 士の間隔を極力狭くし,サセプタ単位面積当たりの原 料利用効率の向上を図っている。ガスノズルはリアク タの下方向から挿入されているためノズルの設置精度 が向上し,原料ガスの噴出しの均等化が促進される。 リアクタ上蓋には基板温度や基板の反り等の In-situ monitor (その場観察モニター)が装着可能である。

Fig. 3に UR25K の搬送系概念図を示す。搬送シス テムの基本仕様として,スループットの向上と洗浄部 品の交換の作業性を考慮してロボット搬送を採用し た。窒素雰囲気のグローブボックス内に設置された搬 送ロボットアームがリアクタ・基板交換テーブル・パ スボックスを適宜移動し,成長毎に使用済みサセプタ カバーとサセプタ対向板をパスボックスから出し入れ することが可能となっている。成長済みのサセプタを パスボックスで冷却待機させ,また,I/O室から基 板を出し入れすることにより,2セットのサセプタを 大気に触れることなく連続的かつ効率的に運用するこ とが可能となっている。

グローブボックス内の日常動作は基板の設置・回収 のみでその他は全て自動化されており,作業の信頼性 とスループットが向上している。

LED 製造時の1日の成長回数を試算した結果を Table 1に示す。サセプタカバー及びサセプタ対向板 は、リアクタ内成長環境の安定性の確保のためドラ

Fig. 2 Photo of the reactor of the UR25K (4 inch \times 11).

Fig. 3 Concept of the transfer system of UR25K.

Growth process of typical LED structure					
Step	Thickness	Growth rate	Require time		
Heat			20min		
Thermal cleaning			10min		
Cool			10min		
Buffer layer			1.7min		
Heat			11min		
GaN	3000nm	3.75µm/h	48min		
n-GaN	4000nm	3.75µm/h	64min		
Cool			25min		
InGaN SLS (10 pairs)	50nm)		26min		
InGaN/GaN MQW (6 pairs)	90nm }	0.117 μm/h	46min		
InGaN	20nm)		10min		
Heat			3.5min		
p-AlGaN	10nm	1 μm/h	0.6min		
p-GaN	100nm	1.34 µm/h	4.5min		
p⁺-GaN	5nm	0.1 µm/h	3min		
Cool (under 200 degee C.)			35min		
	318.3min				

Table 1 Estimation of daily throughput of UR25K for the typical LED structure.

Transfer robot	
Unloading a ceiling plate [Reactor \rightarrow Passbox]	5min
Loading a ceiling plate with cleaning	5min
$[Passbox \rightarrow Reactor]$	
Unloading a susceptor [Reactor \rightarrow Passbox]	3min
Loading a susceptor set new wafers	3min
[Table for exchange of wafers \rightarrow Reactor]	
Subtotal	16min
Total	334.3min
	*
Number of growths per day 4.3	1 times/day

イ洗浄装置の併用を前提とした⁴⁾。洗浄する部品を複 数準備し,一方の部品類が成長に使用されている間に 他方の部品類が洗浄されグローブボックス内で待機状 態なっている。このデバイス構造の場合,手動操作が 主体である SR23K は成長3回/日であるのに対して UR25K では4回以上の成長が可能となった。

3. 実験方法

本章及び次章では, エピ成長実験とその評価結果に ついて紹介する。

ー連の成長実験は大気圧下にて実施した。成長には 直径100mm (4インチ),厚み0.9mmのc面サファ イア基板を用いた。キャリアガスには,N₂及びH₂, V 族原料にはNH₃ (当社製スーパーアンモニア)をそ れぞれの精製器に通して使用した。Ⅲ族原料には,ト リメチルガリウム (TMG),トリメチルアルミニウム (TMA),トリメチルインジウム (TMI) をそれぞれ用 いた。p型ドーパントにはシクロペンタジエニルマ グネシウム (Cp₂Mg),n型ドーパントにはN₂希釈の 10 ppm モノシラン (SiH₄) をそれぞれ用いた。

各種膜の評価項目を **Table 2**に示す。組成・構造 の評価には X 線回折 (XRD ω-2 θ), 膜厚の評価に

Material	Item	Method of evaluation	
	Thickness	SEM Optical interferometry (RPM sigma S)	
GaN	XRC FWHM	XRD ω scan	
	Surface morphology	Nomarski microscope	
	Elemental analysis	SIMS	
	Electrical property	Sheet Resistance (Lehighton)	
AlGaN	Al content Thickness	XRD ω-2 θ	
LED	Thickness	TEM XRD ω-2 θ	
	Optical property	Photoluminescence (RPM sigma S) Electroluminescence (TNSC original system)	

は,光学膜厚測定 (RPM Sigma S),XRD, 走査型電 子顕微鏡 (SEM),透過型電子顕微鏡 (TEM) をそれぞ れ用いた。結晶品質の評価には,(0002)及び(10-12) のX線ロッキングカーブ半値幅 (XRC-FWHM)を測 定した。電気的特性評価にはシート抵抗測定装置を用 いた。Photoluminescence (PL)発光波長の評価には, RPM Sigma S を,元素分析には2次イオン質量分析 (SIMS) をそれぞれ用いた。

UR25Kの成長条件は SR4000と SR23K をベースに 設計した。具体的には、ガス流量は基板中心部の流速 を SR23K と同等となるように設定し、3 層流の流量 バランスは SR4000をベースに決定した。成長温度の 設定は、SR23K の基板温度と同等になるようにした。

4. 実験結果及び考察

4.1 nondoped-GaN

Fig. 4は4インチサファイア基板上に GaN を1時間 成長したときの膜厚マッピングである。

成長速度を見積もると3.6µm/h,4インチ面内の膜 厚分布は1.2%(std.)(外周2mmカット)であった。3 インチ径(φ75mm)の分布はSR23Kと同等であった。

Fig. 4 Thickness mapping of GaN grown on 4 inch sapphire substrate (exclusion zone : 2mm) .

TMG 供給量と基板総面積から算出される原料利用効率は約17%であった。従来の当社 GaN-MOCVD 装置シリーズの中で最高値であり、基板間隔を狭めた効果が大きい。

この成長した GaN の XRC 測定を行った結果を **Fig. 5** に示す。

XRC から得られる (0002) 及び (10-12) の FWHM と転位密度には相関があることが報告⁵⁾ されてお り,その幅が狭ければ転位密度の少ない品質の良好な GaN である。今回成長した GaN の XRC-FWHM は4 インチ基板面内でそれぞれ,(0002): < 200 arcsec, (10-12) < 300 arcsec であり, SR4000 で得られて いる結晶性と同等もしくはそれ以上の値を達成した。

4.2 高速成長 GaN

実際の LED 構造に占める下地 GaN の膜厚の割合が 大きいため、下地 GaN の成長速度の向上は成長時間 の短縮によるスループット向上の観点で重要な技術で ある。しかしながら単純に TMG を増加させ、成長速 度の向上を図ると、品質の劣化及び表面の平坦性が悪 化することが報告されている^{6.7)}。

今回, これまで SR23K 及び SR4000 で培った条件 を活用し10 μ m/h にて nondoped-GaN を3 μ m 成長 した。3.6 μ m/h と10 μ m/h で成長した nondoped-GaN の表面モフォロジーを **Fig. 6**に示す。成長速度の 上昇にともなう表面状態の荒れの発生はなく、良好な モフォロジーを保持している。

この高速成長の GaN を LED に採用することを考慮 し, n-type GaN/nondoped-GaN を 7 µm 成長し, そ の結晶性について調査した結果を **Fig.7**に示す。

XRC-FWHM は 3.6μ m/h のものとほぼ同等であり, さらに 11枚全ポケットの FWHM はどれも (0002): < 200 arcsec, (10-12): < 300 arcsec と良好な値で あった。シート抵抗の基板面内分布は, 3.6μ m/h で 成長したものと同等であった。

また, 高速成長条件を採用すると原料である有機金

Fig.6 Comparison of surface morphology of GaN between 3.6 μ m/h and 10 μ m/h.

Fig.7 XRC-FWHM of (a) wafer to wafer and (b) on wafer.

属分子内に存在する炭素 (C) が不純物として GaN 膜 中へ取り込まれ易くなることが報告されている^{6,7)}。 **Fig. 8**は GaN 膜中 C,酸素 (O),水素 (H)の SIMS 分 析の結果である。GaN の高速成長による C 濃度の増 加は見られなかった。さらに O 濃度,H 濃度におい ても検出下限以下であった。

これらの結果は, 高速成長 (≒ 10 µm/h) の下地 GaN が LED プロセスへの適用並びに全体成長時間の 短縮に大きく貢献できることを示唆するものである。 4.3 AlGaN

AlGaN 成長の原料に使用される TMA は、気相中で 膜に取り込まれない安定なアダクトを形成しやすいこ とが知られている⁸⁾。この気相反応が十分制御された 温度環境であること、流体設計されたリアクタである ことはプロセス条件の広ウインドウ化の観点で極めて 重要である。

Fig. 8 SIMS depth profile of GaN sample at growth rate of 10 μ m/h. (Detection Limits - H ; 8 ×10¹⁶ cm⁻³, C ; 1 × 10¹⁶ cm⁻³, O ; 1 ×10¹⁶ cm⁻³)

Fig. 9は大気圧で成長した AlGaN の Al 組成分布及 び膜厚分布の結果である。リアクタ内の原料ガスの流 速も AlGaN の気相反応を抑制するためのパラメータ の一つである。基板上のガス流速を上げることで原料 ガスの基板上への到達時間を短縮でき,気相反応を 抑制することができる。今回は最もガスを大量に使 用する AlGaN 層のガス使用量の低減を目的に SR23K と比較して流速を約30%下げて成長した。その結果, SR23K で成長した2インチ基板領域に関して同等の 分布であり、4インチ基板面内で Al 組成10.4%, Al 組成分布1.8%を達成した。大気圧成長でほぼ1µm/h の成長速度を達成しており,他機種同様,大気圧下で も気相反応が十分制御できている。

4.4 InGaN/GaN MQW 及び LED 構造

InGaNの成長温度は800℃前後であるが、In 組成 が成長温度に非常に敏感で、この領域の温度制御は LEDの歩留まりを決定する重要なパラメータである。 今回は InGaN/GaN の5重量子井戸構造(5QW)を成

Fig. 9 Al composition and thickness distribution of bulk AlGaN (growth time : 6min).

長し, その PL 発光特性を調査した。そのスペクトル を Fig. 10に示す。

半値幅<25 nm であり SR23K 及び SR4000 と比較 しても遜色ない発光特性である。

次にこの MQW 構造を活性層として用いて LED 構 造を作製した。成長した構造の概略図及び断面 TEM 写真を Fig. 11に示す。TEM 写真より, InGaN well 層及び GaN barrier 層の界面の平坦性は良好である こと,各層の厚みはそれぞれ InGaN well 層: 2.2 nm, GaN barrier 層: 11.3 nm, p-AlGaN 層: 20.3 nm, p-GaN 層: 89.7 nm と設計膜厚通りであり,各層の界 面の急峻性が確認できる。

Fig. 12に XRD ω -2 θ の測定結果及び構造シミュ レーションの結果を合わせて示す。シミュレーション 結果は測定結果とほぼ合致し、サテライトピークは急 峻で且つそれぞれの半値幅も狭い。サテライトピーク 間隔から見積もった MQW の1周期厚みは13.5 nm で あり、TEM の結果と一致している。これは、p 層成 長時の昇温過程において MQW が破壊されることな く、また MQW 成長時において、In が barrier 層に拡 散することなく、設計通りの構造ができていることを

Fig. 10 PL spectrum of InGaN/GaN MQW structure at room temperature.

Fig. 11 Schematic diagram and cross-sectional TEM image of the LED structure.

示唆している。

簡易 EL 測定を行ったが,同構造で比較した EL 出 力は,SR4000のそれと同等であった。さらに上記 LED の構造及び成長条件を最適化して同評価を実施し た結果を Fig. 13に示す。4インチ基板上 LED 構造に おいて,SR4000とほぼ同レベルの光出力及び発光ス ペクトルの半値幅を達成した。この結果は,UR25K が SR4000と同レベルの LED を作製可能な量産装置 であることを示している。

Fig.13 Comparison of EL spectra of LED between UR25K and SR4000.

5.まとめ

大口径基板 (4インチ/6インチ)対応の量産型 MOCVD 装置 "UR25K"の初期評価として、GaN、 AlGaN 及び InGaN の大気圧での成長実験を行った。 NH₃と有機金属原料との間の気相反応が十分抑制され ていることを検証し、リアクタ内の温度環境及び原料 ガスフローが設計通り制御できていることを確認し た。

サセプタ内の自転用歯車の設計を工夫し,基板間隔 を極力狭めることで有機金属の原料利用効率を17% 以上に向上できた。 UR25K 及び SR4000 でそれぞれ成長した4インチ 基板の評価結果を **Table 3**に示す。UR25K のエピ特 性は,現時点で SR4000 とほぼ同等の値を達成するこ とができた。特に GaN の成長速度を約 10μ m/h まで 上げても膜中の C 濃度の上昇は見られなかった。

今後は,LED チップでの評価及びその分布に着目 し性能向上に努める。本装置が,今後拡大が予想され る窒化ガリウム系半導体デバイス市場において,生産 装置として大いに貢献できるものと考える。

Table 3 Comparison of results of several materials grown on 4 inch sapphire substrate between UR25K and SR4000.

Material	Item	UR25K (4 inch × 11)	SR4000 (4 inch \times 1)
		(111011) (11)	
nondoped GaN	XRC-FWHM (0002)	162arcsec	185arcsec
	XRC-FWHM (10-12)	252arcsec	345arcsec
	Thickness uniformity	$\sigma = 1.2\% *$	σ =0.8% *
AlGaN	Al compotition	0.104	0.26
	Al uniformity	⊿ 1.8%	⊿ 3.6%
	Thickness uniformity	⊿ 3.4%	⊿ 8.2%
InGaN/GaN	PL wavelength	456nm	463nm
MQW	PL FWHM	22nm	24nm
	Peak position uniformity	σ =0.9% *	σ =0.5% *

* Exclusion zone : 2mm

参考文献

- Nakamura, S.; Mukai, T.; Senoh, M. Candera-class highbrightness InGaN/AlGaN double-heterostructure bluelight-emitting diodes. Appl. Phys. Lett. 1994, 64, p.1687–1689.
- 2009年度版 LED 関連市場総調査. 富士キメラ総研, 2009, p.13-22.
- 3) 徳永裕樹,福田靖,生方映徳,阿久津仲男,稲石美明,小 関修一,山口晃,植松邦全.大型量産 GaN 用 MOCVD 装 置の開発.大陽日酸技報.2006,(25), p.1-6.
- 4) Fukuda, Y.; Orita, T.; Akutsu, N.; Ikenaga, K.; Koseki, S.; Matsumoto, K.; Hasaka, S. Ex situ dry cleaning of reactor component of nitride metal organic chemical vapor deposition using chlorinated gas. J. Crystal Growth. 2007, 298, p.433–43.
- Heinke, H.; Kirchner, V.; Einfeldt, S.; Hommel, D. X-ray diffraction analysis of the defect structure in epitaxial GaN. Appl. Phys. Lett. 2000, 77, p.2145-2147.
- 6) Matsumoto, K.; Tokunaga, H.; Ubukata, A.; Ikenaga, K.; Fukuda, Y.; Tabuchi, T.; Kitamura, Y.; Koseki, S.; Yamaguchi, A.; Uematsu, K. High growth rate metal organic vapor phase epitaxy GaN. J. Crystal Growth. 2008, 310, p.3950–3952.
- 7) 矢野良樹, 生方映徳, 池永和正, 田渕俊也, 松本功, 清水 三聡 大気圧 MOVPE 装置による窒化ガリウムの高速成 長.第69 会応用物理学会学術講演会予稿集 No.1. 2008, p.309.
- Nakamura, K.; Makino, O.; Tachibana, A.; Matsumoto, K.Quantum chemical study of parasitic reaction in III-V nitride semiconductor crystal growth. J. Organomet. Chem. 2000, 611, p.514–524.